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ABSTRACT 

 

EFFICACY AND MECHANISTIC EVALUATION OF TIC10, 
A NOVEL ANTITUMOR AGENT 

 

Joshua E. Allen 

 

Wafik S. El-Deiry, M.D. Ph.D. 

 

TNF-related apoptosis-inducing ligand (TRAIL; Apo2L) is an endogenous protein that selectively 

induces apoptosis in cancer cells and is a critical effector in the immune surveillance of cancer. 

Recombinant TRAIL and TRAIL-agonist antibodies are in clinical trials for the treatment of solid 

malignancies due to the cancer-specific cytotoxicity of TRAIL. Recombinant TRAIL has a short 

serum half-life and both recombinant TRAIL and TRAIL receptor agonist antibodies have a limited 

capacity to perfuse to tissue compartments such as the brain, limiting their efficacy in certain 

malignancies. To overcome such limitations, we searched for small molecules capable of 

inducing the TRAIL gene using a high throughput luciferase reporter gene assay. We selected 

TRAIL-inducing compound 10 (TIC10) for further study based on its induction of TRAIL at the cell 

surface and its promising therapeutic index. TIC10 is a potent, stable, and orally active antitumor 

agent that crosses the blood-brain barrier and transcriptionally induces TRAIL and TRAIL-

mediated cell death in a p53-independent manner. TIC10 induces a sustained upregulation of 

TRAIL in tumors and proximal cells that may contribute to the antitumor activity of TIC10 through 

a bystander effect. Expression profiling of TIC10-induced transcriptional changes revealed 

changes in FOXO target genes. We found that Foxo3a undergoes a TIC10-induced nuclear 

translocation, binds to the TRAIL gene promoter in response to TIC10, and is responsible for 

TIC10-induced cell death and TRAIL production in vitro and in vivo. TIC10 activates Foxo3a 

through the dual inactivation of Akt and ERK, which normally phosphorylate and inactivate 

Foxo3a. The induction of TRAIL by TIC10 can be recapitulated using pharmacological inhibitors 

of Akt and ERK signaling pathways or siRNA. These mechanistic data provide a clear therapeutic 
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strategy for targeting the TRAIL gene and suggest that Foxo3a-mediated TRAIL induction is 

responsible for the synergy between PI3K/Akt and MAPK pathway inhibitors. TIC10 is a 

potentially first-in-class antitumor therapy that utilizes the tumor microenvironment to produce 

TRAIL, acts as a pharmacological delivery vehicle to improve the therapeutic properties of TRAIL, 

and highlights Foxo3a activation as an attractive opportunity to induce TRAIL-mediated apoptosis 

that can be harnessed through dual inhibition of the MAPK and PI3K/Akt pathway. 
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1.1 TRAIL Biology   

Overview 

TNF-related apoptosis-inducing ligand (TRAIL) was initially identified by its sequence homology 

with other Tumor Necrosis Factor (TNF) family members (Pitti et al., 1996; Wiley SR, 1995). At 

physiological conditions, TRAIL is capable of binding to four distinct transmembrane receptors in 

humans: the proapoptotic receptors DR4 and DR5 or the two decoy receptors DcR1 and DcR2. 

Both TRAIL and its receptors form homotrimers in complex upon binding (Cha et al., 1999; 

Hymowitz et al., 1999). In mice, TRAIL-R is the only cognate death receptor (Wu et al., 1999). 

TRAIL also binds two decoy receptors, DcR1 (Degli-Esposti et al., 1997b; Mongkolsapaya et al., 

1998; Pan et al., 1997a) that lacks an intracellular domain and DcR2 (Degli-Esposti et al., 

1997a; Marsters et al., 1997; Pan et al., 1998) which contains a truncated intracellular domain. 

The two decoy receptors compete for TRAIL binding with the death receptors with similar 

binding affinities (Degli-Esposti et al., 1997a; Degli-Esposti et al., 1997b). Additionally, TRAIL 

binds the soluble receptor osteoprotegerin that negatively regulates osteoclastogenesis and 

bone resorption, though the interaction is much weaker than that of the other TRAIL receptors 

(Emery et al., 1998).  

TRAIL has received considerable attention, primarily due to its apoptosis-inducing 

capability demonstrated in several human cancer cell lines (Walczak et al., 1997). TRAIL is 

expressed in a variety of human fetal and adult tissues including spleen, thymus, prostate, small 

intestine, and placenta (Wiley SR, 1995). Contrary to other TNF-family members, membrane-

bound TRAIL is conditionally expressed in immunological cells such as natural killer (NK) cells, B 

cells, monocytes, and dendritic cells following cytokine stimulation (Fanger et al., 1999; Griffith et 

al., 1999; Kemp et al., 2004; Zamai et al., 1998). Intracellular stores of TRAIL have also been 

found in polymorphonuclear neutrophils (Cassatella et al., 2006; Kemp et al., 2005; Koga et al., 

2004; Ludwig et al., 2004; Tecchio et al., 2004) which are released after a variety of stimuli 

(Kemp et al., 2005; Simons et al., 2008; Simons et al., 2007).  

 The X-ray crystallographic structures of trimeric soluble TRAIL revealed a single zinc 

atom bound between the three monomers that is important for the integrity and activity of TRAIL 
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(Bodmer et al., 2000; Cha et al., 1999; Eimon et al., 2006; Hymowitz et al., 1999; 

Mongkolsapaya et al., 1999). Upon binding TRAIL, the two human proapoptotic death receptors 

DR4 (Pan et al., 1997a) and DR5 (MacFarlane et al., 1997; Pan et al., 1998; Pan et al., 1997d; 

Walczak et al., 1997; Wu et al., 1997) initiate cell death signaling through colocalization of their 

intracellular death domains (DD) that occurs after ligand binding (Tartaglia et al., 1993).  

 

 

 

Figure 1.1. Crystal structure of TRAIL:DR5 complex. Homotrimeric DR5 (grey, light pink, and 

yellow) bound to homotrimeric TRAIL (cyan, green, and magenta). Zinc atom (green) is 

displayed in the center of the complex. Figure was generated by Joshua Allen using PyMOL 

software with Protein Data Bank (PBD) accession number 1D4V (Mongkolsapaya et al., 1999). 
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TRAIL signaling 

TRAIL binding to DR4 or DR5 also triggers the internalization of the receptor:ligand complex by 

dynamin-mediated endocytosis and can attenuate TRAIL signaling (Austin et al., 2006; 

Kohlhaas et al., 2007). Following ligand binding, the colocalized DDs of DR4 or DR5 recruit Fas-

associated death domain (FADD) and procaspase-8 to form the death inducing signaling 

complex (DISC). Caspase-10 is also recruited to this DISC and is activated at the same rate as 

caspase-8 (Kischkel et al., 2001; Sprick et al., 2002; Wang et al., 2001). Mice lack a homologue 

of caspase-10, suggesting that caspase-8 and caspase-10 may be functionally redundant. 

However, the ability of these two caspases to substitute for each other in TRAIL-mediated 

apoptosis in mammalian cells is unclear due to conflicting reports. The anti-apoptotic protein 

cellular FLICE-like inhibitory protein (c-FLIP) can also be recruited to DISC to inhibit binding 

activation of caspase-8 and -10 by directly competing for binding to FADD (Micheau et al., 2002; 

Thome and Tschopp, 2001).  

At the DISC, procaspase-8 is activated by autocatalytic cleavage to yield caspase-8, 

which can cleave the effector caspases-3, -6, and -7 to induce apoptosis by the intrinsic death 

pathway. Cells that undergo cell death via this pathway are known as type I cells. Activation of 

caspase-8 in type II cells, however, is not sufficient to trigger the caspase cascade. In type II 

cells, caspase-8 cleaves Bid to form tBid, which primarily interacts with Bax and Bak at the 

mitochondrial membrane to promote cytochrome c release (Li et al., 1998; Luo et al., 1998). In 

the cytosol, cytochrome c binds to apoptotic peptidase activating factor 1 (Apaf-1) and caspase -

9 to form the apoptosome, which initiates the caspase cascade. Permeabilization of the 

mitochondrial membrane also releases Smac/DIABLO, which inhibits X-linked inhibitor of 

apoptosis protein (XIAP) to allow for complete activation of the effector caspases (Albeck et al., 

2008; Jost et al., 2009; Maas et al., 2010; Sun et al., 2002).  
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Figure 1.2. Apoptotic signaling induced by TRAIL. TRAIL initiates cell death by binding to the 

proapoptotic death receptors DR4 or DR5 that colocalizes their intracellular death domains. This 

clustering recruits the Fas-associated death domain (FADD) and pro-caspase-8 that results in its 

activation through autocatalytic cleavage. In type II cells, active caspase-8 cleaves Bid to a 

truncated form, tBID, which subsequently interacts with proapoptotic Bcl-2 family members Bax 

and Bak. This interaction leads to permeabilization of the mitochondrial membrane and release of 

cytochrome c. Cytosolic cytochrome c then combines with Apaf-1 and ATP to form the 

apoptosome that activates caspase-9 to trigger apoptosis through the caspase cascade. The 

stress-activated kinase JNK can phosphorylate the antiapoptotic Bcl-2 family members such as 

Bcl-xL to dissociate their interactions with the proapoptotic Bcl-2 family members Bax and Bak. 

These previously sequestered proapoptotic proteins are then free to oligomerize and porate the 

mitochondrial membrane to induce apoptosis. Figure was adapted with permission from the 

publisher (Elsevier) (Allen and El-Deiry, 2011).  
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Cancer cell mechanisms of resistance to TRAIL 

While many cancer cells are sensitive to TRAIL, there are a significant number of cancer cell 

lines that are resistant to TRAIL-mediated cell death. Mechanisms of TRAIL resistance and 

sensitization through combinatorial therapy have been intensely studied because of the impetus 

to develop recombinant human TRAIL (rhTRAIL) as an antitumor agent. The most obvious 

mechanism of resistance is downregulation of the proapoptotic receptors, which has been 

described in head and neck cancer and small cell lung cancer. The El-Deiry lab found that tumor 

cell lines with evolved resistance to rhTRAIL downregulated surface DR4 and DR5, though the 

total cellular expression level was unchanged (Jin et al., 2004). Mutations in the DR5 gene have 

also been noted in its death domain in head and neck cancer (Pai et al., 1998), metastatic breast 

cancer (Shin et al., 2001), NSCLC (Lee et al., 1999), and non-Hodgkin’s lymphoma (Lee et al., 

2001). Upregulation of decoy receptors has also been proposed as a culprit in some settings: 

DcR1 in gastrointestinal tract tumors (M Saeed Sheikh, 1999), DcR2 in human breast cancer cell 

lines (Sanlioglu et al., 2005) and human lung and prostate tumor cells (Aydin et al., 2007; 

Sanlioglu et al., 2007). The ratio of DR4 to DcR1 and DcR2 has also been linked to TRAIL 

sensitivity in primary tumor cells (C Büneker, 2009). However, given that TRAIL signaling 

involves many molecules that can transduce, amplify, or inhibit apoptotic signaling it is perhaps 

unsurprising that TRAIL receptor expression levels alone are insufficient to explain TRAIL 

sensitivity in most cases (Griffith and Lynch, 1998; Lincz et al., 2001).  

Aside from c-FLIP that confers resistance at the receptor level, several downstream 

regulators of apoptosis have been identified as potent determinants of TRAIL sensitivity. Of 

particular importance is the Bcl-2 family of proteins that regulator mitochondrial-mediated cell 

death and contain pro-apoptotic (Bax, Bak, Bad, and Bok) and anti-apoptotic (Bcl-2, Bcl-XL Mcl-

1, and Bcl-w). The pro-apoptotic Bcl-2 family members induce cell death by oligomerization, 

which causes pores in the mitochondrial membrane, leading to cytochrome-c release and 

eventually caspase-mediated apoptosis. Accordingly, downregulation of pro-apoptotic Bcl-2 

members such as Bax (Burns and El-Deiry, 2001) or upregulation of anti-apoptotic members 
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such as Bcl-2 (Meng et al., 2007; Sun et al., 2001) have been sufficient to cause cancer cell 

resistance to TRAIL. Other proteins that inhibit apoptosis such cIAP, XIAP, and survivin have 

also been identified as important regulators of TRAIL sensitivity (Chawla-Sarkar et al., 2004; 

Cummins et al., 2004).  

A more recently described mechanism of modulating TRAIL sensitivity is post-translation 

modifications to DR4 and DR5 such as glycosylation and palmitoylation. Enzymes involved in O-

linked glycosylation such as GALNT14, GALNT3, FUT3, and FUT6 have been strongly 

correlated with TRAIL sensitivity in several cancer cell lines (Wagner et al., 2007). Biochemical 

analysis of DR5 provided direct evidence that this glycosylation event increases sensitivity to 

TRAIL-mediated cell death. Such post-translational modification appears to be specific to TRAIL 

receptors rather than other receptors of the TNF family such as Fas. The unique glycosylation 

sites in the extracellular domains of DR4 and DR5 that are not shared by other family members 

may explain this. N-linked glycosylation appears to also affect DR4 at a unique site that is not 

conserved in DR5 (Pan et al., 1997a; Sheridan et al., 1997; Yoshida et al., 2007). DR4 is also 

palmitoylated at three intracellular sites that results in inhibition of signaling through the extrinsic 

death pathway (Rossin et al., 2009).  

Nevertheless, TRAIL induces rapid apoptosis in several solid and hematological 

malignant cell lines as a monotherapy (Ashkenazi et al., 1999b; Gazitt, 1999; Kelley et al., 2001; 

Marini et al., 2005; Pollack et al., 2001) and in combination with chemotherapy and radiotherapy 

whit enhances antineoplastic efficacy (Chinnaiyan et al., 2000; Gliniak and Le, 1999; Keane et al., 

1999a; Keane et al., 1999b; Mizutani et al., 1999; Nimmanapalli et al., 2001). This therapeutic 

synergy may be due to upregulation of p53 in response to chemotherapy and radiation, which 

induces DR4 and DR5 expression (El-Deiry, 2000; Liu et al., 2004). 

 

Non-apoptotic TRAIL signaling 

The notion that cancer cells are more sensitive to TRAIL, a tumor suppressor that is a pro-

apoptotic ligand, is counterintuitive as the genesis and progression of cancer typically involves 

loss of function associated with tumor suppressors. While this disparity is still unclear, it seems 
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that in certain settings TRAIL signaling can be converted to prosurvival signaling through 

mechanisms that involve IKK, JNK, and p38 MAPK. Among these events, IKK-mediated 

activation of NFκB is the most reported alternative signaling pathway triggered by TRAIL 

stimulation. Signal transduction through this axis involves an association of receptor-interacting 

protein-1 (RIP1), TNF receptor-associated factor 2 (TRAF2), NF-kappa-B essential modulator 

(NEMO), TNF-R1-associated death domain (TRADD), and caspase-10 into a complex called 

Complex II (Jin and El-Deiry, 2006; Varfolomeev et al., 2005). Formation of Complex II is 

dependent on FADD and caspase-8, though these proteins are not associated with the complex. 

Within Complex II, NEMO appears to activate IKK whereas RIP1 and TRAF2 are important for 

activating JNK and p38 MAPK (Lin et al., 2000).  

While the functional significance or physiological relevance of activating of these 

prosurvival signaling pathways by TRAIL stimulation is still under investigation, the phenomenon 

has been described for other TNF family members. Some reports found that inactivation of NFκB 

sensitizes cells to TRAIL-mediated cell death (Beraza et al., 2009; Lluis et al., 2010; Luo et al., 

2004), which supports the notion that NFκB activation acts as a negative feedback to dampen 

proapoptotic signaling induced by TRAIL. Alternatively, NFκB inactivation has been reported to 

decrease sensitivity to TRAIL in certain cell types (Chen et al., 2003; Ou et al., 2005) and NFκB 

activation can also recruit phagocytes through upregulation of chemokines (Varfolomeev et al., 

2005). TRAIL has also been reported to induce autophagy in certain cells types (Han et al., 2008; 

Herrero-Martin et al., 2009; Hou et al., 2008; Mills et al., 2004; Park et al., 2007) and DR5 has 

been linked to anoikis (Laguinge et al., 2008; Samara et al., 2007), a form of programmed cell 

death that involves detachment of adherent cells.  

 

Physiological roles for TRAIL 

TRAIL is expressed on the surface of immune effector cells such as natural killer cells, 

macrophages, dendritic cells, and cytotoxic T-cells in response to cytokines, in particular 

interferon-gamma that contains a response element in the TRAIL gene promoter (Gong and 

Almasan, 2000). TRAIL-knockout mice or zebrafish do not display any gross developmental 
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defects (Cretney et al., 2002; Eimon et al., 2006), though the mice are more susceptible to 

carcinogen-induced sarcomas and metastasis (Cretney et al., 2002). TRAIL-knockout mice also 

do not induce thymocyte apoptosis, which is deregulated in autoimmune diseases (Lamhamedi-

Cherradi et al., 2003). Clinical observations have also suggested a role for TRAIL in autoimmune 

diseases; patients with systemic lupus erythmatosus or multiple sclerosis have elevated serum 

levels of soluble TRAIL (Lub-de Hooge et al., 2005; Wandinger et al., 2003). TRAIL has also 

been implicated in cardiovascular problems such as atherosclerosis (Michowitz et al., 2005; 

Schoppet et al., 2006) and diabetes (Corallini et al., 2007). The El-Deiry lab also created the first 

TRAIL-R knockout mouse that developed normally but had an enlarged thymus and decreased 

radiation-induced apoptosis in several tissues (Finnberg et al., 2005).  

 

1.2 TRAIL-based Therapies as Antitumor Agents 

Overview 

Due to the potent and cancer-selective apoptotic activity of TRAIL, rhTRAIL has been intensely 

studied and developed for use as a novel treatment for human cancer. Most studies have found 

TRAIL to have no effects on normal cells, which boded well for the safety profile of rhTRAIL. 

Concerns were raised when reports surfaced that rhTRAIL induced cell death in hepatocytes, 

though this was later found to likely be specific to the version and preparation of a particular His-

tagged rhTRAIL (Higuchi et al., 2002; Jo et al., 2000; Lawrence et al., 2001; Walczak et al., 

1999b). Various forms of rhTRAIL have been described with a polyhistidine tag (Pitti et al., 

1996), Flag tag (Pascal, 2000), leucine zipper (Ganten et al., 2006; Walczak et al., 1999a), or 

isoleucine zipper. Comparisons of these preparations suggested that leucine or isoleucine zipper 

rhTRAIL was effective and was not toxic to hepatocytes (Ganten et al., 2006). rhTRAIL was 

found to be safe in cynomolgous monkeys and have a terminal plasma half-life of approximately 

30 minutes (Ashkenazi et al., 1999a). Non-human primates were used in these safety studies as 

rodents are resistant to the toxicity of TNF, which is in the same family of proteins as TRAIL. A 

phase I study with intravenous rhTRAIL in humans reported no dose-limiting toxicities, 17/32 



www.manaraa.com

10 

patients with stable disease, and one patient with a chondrosarcoma had a partial response 

(Herbst et al., 2006; Herbst et al., 2010a).  

 Several TRAIL-receptor agonist antibodies have been developed that target either DR4 or 

DR5 with benefits of having longer serum half-lives and the absence of binding to the decoy 

receptors, DcR1 and DcR2. Human Genome Sciences has developed two pro-apoptotic death 

receptor agonist antibodies: lexatumumab and mapatumumab that target DR5 and DR4, 

respectively. These antibodies exhibited a promising spectrum of activity in preclinical studies and 

are currently in clinical trials in several settings.  

 

Lexatumumab  

Lexatumumab is one of the most developed DR5-agonist antibodies. A phase I study with 

lexatumumab given as a single intravenous dose every 21 days in previously treated advanced 

solid malignancies reported a maximum-tolerated dose (MTD) of 10 mg/kg. The terminal serum 

half-life was reported as ~16 days and roughly a third of enrolled patients experienced stable 

disease (Plummer et al., 2007). Another phase I study reported 10 mg/kg lexatumumab to be 

safe at a more frequent interval of one dose every 14 days (Wakelee et al., 2010).  

 As with rhTRAIL, several preclinical studies have suggested the use of lexatumumab in 

combination with other therapies to increase efficacy such as lapatinib (Dolloff et al., 2011) 

radiation (Marini et al., 2006), paclitaxel (Gong et al., 2006), bortezomib (Luster et al., 2009; 

Saulle et al., 2007; Smith et al., 2007), HDAC inhibitors (Nawrocki et al., 2007), doxorubicin (Wu 

et al., 2007), and cisplatin (Wu and Kakehi, 2009). Phase Ib studies evaluated lexatumumab in 

combination with gemcitabine, pemetrexed, doxorubicin, or FOLFIRI (B. I. Sikic, 2007). Tumor 

regression was noted in patient cohorts receiving the combination of lexatumumab and 

doxorubicin or FOLFIRI. Severe adverse events were noted, with anemia, fatigue, and 

dehydration cited as potentially attributable to lexatumumab among the combined therapies.  

 

Conatumumab  
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Conatumumab (AMG 665) is a fully humanized agonist antibody against DR5 that has been 

developed by Amgen. (Kaplan-Lefko et al., 2010). A link between the increase in serum caspase-

3/7 activity and M30 level, a keratin cleavage product, in the activation of the extrinsic apoptotic 

pathway by conatumumab in a preclinical cancer model, which could be used as cell death 

biomarkers (Kaplan-Lefko et al., 2010). A first-in-man study with conatumumab reported no dose-

limiting toxicity (DLT) when administered at 20 mg/kg once every 14 days. This safety was 

corroborated with the same dosing schedule in Japanese patients (Doi et al., 2011). No maximum 

tolerated dose was reached but there were tumor reduction seen in a few patients receiving 0.3 

mg/kg, which including NSCLC and colorectal cancer (Herbst et al., 2010b). An interim analysis 

of a phase Ib/II study combining conatumumab with panatumumab in metastatic colorectal cancer 

reported safety but no sign of efficacy in that setting. Another phase Ib/II study combining 

conatumumab and doxorubicin in advanced unresectable soft tissue sarcomas also reported 

safety but no additional efficacy over doxorubicin alone (Demetri et al., 2012).  Encouragingly, a 

recent report found that conatumumab in combination with FOLFIRI significantly increased 

progression-free survival (PFS) and objective response rate compared FOLFIRI combined with 

placebo or the type I IGF receptor antagonist antibody ganitumab (Cohn et al., 2012).  

 

Drozitumab 

Drozitumab (Apomab, PRO95780) is another DR5-agonist antibody developed by Genentech that 

exhibited activity in preclinical models including rhabdomyosarcoma (Adams et al., 2008; Kang et 

al., 2011). The first phase I study reported safety at up to 20 mg/kg given once every 14 days and 

a terminal serum half-life of ~9 to 19 days (Camidge et al., 2007). A phase Ib with drozitumab and 

first-line FOLFOX plus bevacizumab in patients with metastatic CRC reported that the 

combination was well tolerated and no adverse interactions were found between drozitumab and 

the chemotherapy (C. S. Rocha Lima, 2011). In another phase Ib study, drozitumab was 

combined with cetuximab plus irinotecan or with FOLFIRI with or without bevacizumab in 

previously treated metastatic CRC patients. This trial also reported no adverse interactions 

between drozitumab and the chemotherapy (A. D. Baron, 2011).  
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Mapatumumab 

Mapatumumab (HGS-ETR1) is the only DR4-targeted antibody currently in clinical trials. 

Mapatumumab exhibited preclinical antitumor activity against several cancer cell lines but no 

objective response was found when used as a single agent in a phase I study [14]. Most studies 

showed that TRAIL-receptor agonist antibodies are not very effective when used as monotherapy 

in patients with gastrointestinal (GI) cancer. Combining TRAIL with other therapeutic agents may 

overcome resistance mechanisms, such as combination of TRAIL-based therapies with c-FLIP 

inhibitors or the multi-kinase inhibitor sorafenib, which downregulates Bcl-xL, cIAP2, and Mcl1 

(Ricci et al., 2007). Mapatumumab has been studied in three phase II trials that included patients 

with non-Hodgkin’s lymphoma (NHL), colorectal cancer, and NSCLC (Greco et al., 2008) 

(Trarbach et al., 2010). No dose limiting toxicity was noted in these studies and clinical response 

or stable disease was observed in 14 or 17 patients with follicular NHL. Mapatumumab has also 

demonstrated clinical efficacy in combination with gemcitabine and cisplatin (Mom et al., 2009) as 

well as paclitaxel and carboplatin (Leong et al., 2009). In collaboration with Anaphore, we have 

been involved in the development of DR4-agonist Atrimers, which are trimeric peptide scaffolds 

engineered to mimic the natural ligand TRAIL, that demonstrate promising preclinical efficacy and 

safety (Allen et al. manuscript submitted, 2012).  

 

TRAIL delivery by gene therapy 

An alternative therapeutic method of overcoming limitations of rhTRAIL is using gene delivery 

methods such as adenoviruses to deliver the antitumor protein. Ad5-TRAIL is a replication-

deficient adenovirus that encodes for the human TRAIL gene and has demonstrated efficacy in 

preclinical models of prostate cancer (Griffith and Broghammer, 2001). Several preclinical studies 

have demonstrated the utility of overexpressing the TRAIL gene by viral methods and have also 

noted bystander effects by normal cells that cause tumor-specific cell death (He et al., 2004; Lee 

et al., 2002). Interestingly, one study found that adenoviral TRAIL has a greater spectrum of 

activity than soluble TRAIL (Seol et al., 2003). The problem of delivering TRAIL across the blood-
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brain barrier has also been overcome in preclinical studies by using viral-mediated 

overexpression of TRAIL on mesenchymal stem cells that migrate toward gliomas (Sasportas et 

al., 2009).  

1.3 Regulation of the human TRAIL Gene 

The TRAIL gene is tightly regulated, potentially due to its considerable apoptotic potential and its 

involvement in some immune responses. The first report to clone the TRAIL gene promoter 

characterized a ~1.6kB promoter region, which is 97 bp upstream of the start of translation (Wang 

et al., 2000). This report identified several putative transcription factor binding sites in the TRAIL 

gene promoter: NHF3, GKLF, AP-1, CEBP, NFAT, GATA, and Inteferon-γ-activated sequence 

(GAS), GSP1, GSP2, and GSP4. Sequential deletions of the human TRAIL gene promoter driving 

luciferase reporters in Caco-2 cells suggested that the regions between -1371 to -819 and -165 to 

-35 contain key elements that are responsible for basal TRAIL transcriptional activity. TRAIL gene 

transcription has been reported to respond to several transcription factors, cytokines, and small 

molecules (Figure 1.3) and in some cases have been mapped to transcription factors with 

consensus binding sequences found in the TRAIL gene promoter (Figure 1.4). 
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Figure 1.3. Molecules that alter human TRAIL gene transcription. Interferons (IFN) activate 

TRAIL gene transcription through ISRE and IRFE sequences in the promoter region. Mutant 

HRAS (G12V) silences TRAIL expression through hypermethylation of CpG islands in the TRAIL 

gene promoter. Green arrows indicate activating relationships, red arrows lines indicate inhibitory 

relationships, and blue arrow indicates start of transcription site.  
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Figure 1.4. Sequence analysis of the human TRAIL gene promoter. Putative binding sites 

indicated by highlights above the appropriate sequences. Nucleotides contained in two or more 

putative binding sites are highlighted in red. Binding sites that have been empirically 

demonstrated to affect TRAIL promoter activity in experiment are bolded. Vertical lines below the 

sequence indicate SNPs. TRAIL sequence obtained from Accession No. AF178756.  

 

Interferons 

Luciferase reporter experiments found that interferon-γ was capable of inducing TRAIL promoter 

activity by two-fold in a region between 165 and -35 (Wang et al., 2000), which explained a 

previous report that showed rapid induction of TRAIL following incubation with IFN-γ (Griffith et 

al., 1999). STAT1 and IRF1 are thought to directly mediate the effects of IFN-γ on the TRAIL 

promoter. IFN-γ has also been shown to induce FasL- and TRAIL-dependent apoptosis in lung 

cancer cells (Kim et al., 2002) and is responsible for IL18- and TLR3-induced TRAIL expression 

in NK cells (Tu et al., 2011).  

There are reports that suggest type I interferons (IFN-α and -β) induce the TRAIL gene 

more strongly that IFN-γ (Gong and Almasan, 2000). IFN-α and -β potently induce TRAIL in CD4+ 

and CD8+ peripheral blood T-cells following CD3-stimulation (Kayagaki et al., 1999) as well as 

Jurkat T cells.  IFN-α has also been shown to induce TRAIL in macrophages (Solis et al., 2006) 

and in lymphoma cells in a JNK-dependent manner (Yanase et al., 2005).  IFN-β induces TRAIL 

in colorectal cancer cell lines by a Stat-1-dependent mechanism (Choi et al., 2003). Taking the 

evidence together, IFN- α, -β, -γ have been shown to induce TRAIL gene transcription, though 

the robustness of TRAIL induction among them seems to be context-dependent.    

 

NFAT 

TRAIL is also positively regulated by the transcription factor NFAT, which is activated by 

calcineurin-mediated dephosphorylation.  Wang et al. investigated the role of NFAT regulation of 

the TRAIL gene promoter due to the two putative binding sites that they previously noted in 

addition to three other newly found potential NFAT binding sites (Wang et al., 2000; Wang et al., 
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2011c). Among the 5 NFAT family members, NFATc1 was by far the most potent positive 

regulator of the TRAIL transcription. Interestingly, NFAT-dependent TRAIL was not affected by 

deletion of their putative binding sites in luciferase reporters but instead was abrogated by 

deletion of the -165 to -35 region. Chromatin-immunoprecipitation and electrophoretic mobility 

shift assay (EMSA) experiments revealed that NFATc1 antagonizes SP-1 binding to the TRAIL 

promoter. This reports highlights a mechanism that immune cells such as cytotoxic T-cells might 

utilize to upregulate TRAIL and also underscores the need to directly test binding sites to 

accurately delineate transcriptional regulation. These observations also suggested that SP-1 may 

negatively regulate the TRAIL gene promoter.  

 

SP-1 

The study that described NFAT regulation of the TRAIL promoter also found that SP-1 represses 

TRAIL gene transcription, at least in human intestinal cells (Wang et al., 2011c). However, a 

recent study reported a positive regulation of TRAIL gene transcription by SP-1 in vascular 

smooth muscle cells but appears to involve SP-1 phosphorylated at Thr453 (Chan et al., 2010). 

Phosphorylation of SP-1 at Thr453 and Thr739 by p38 appears to be essential for its positive 

regulation of the VEGF gene (Lin et al., 2011). Future studies need to further examine if these 

differences are due to difference in cell types or if this phosphorylation event modulates the 

relationship between SP-1 and TRAIL gene regulation. The mechanism of HDACi-induced 

upregulation of TRAIL appeared to involve SP-3 (Nebbioso et al., 2005). 

 

NFκB 

Inhibition of NFκB in Jurkat T cells and primary T lymphocytes revealed that NFκB positively 

regulates TRAIL expression in a manner that depends on the NFκB binding site 1 (Baetu et al., 

2001) (Fig. 1.4). NFκB also upregulates FasL and together, these proapoptotic ligands may be 

responsible for tumor-cell elimination in immune surveillance and/or attenuation of T-cell 

activation to prevent autoimmunity. NFκB is also responsible for constitutive TRAIL expression in 

human T-cell leukemia virus type I (HTLV-1)-induced leukemia, though other concomitant effects 
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of NFκB seem to cause resistance to TRAIL-mediated apoptosis (Matsuda et al., 2005). In 

accordance with a positive regulatory role for NFκB with respect to TRAIL, the prostaglandin 15d-

PGJ2 represses TRAIL transcription by inhibiting the binding of NFκB to the NFκB binding site 1 

(Fig. 1.4). This study also identified the transcription factor HSF-1 as a negative regulator of the 

TRAIL gene that is involved in 15d-PGJ2-induced TRAIL repression. This negative regulation of 

HSF-1 is completely dependent on its DNA binding domain and is in contrast to its positive 

regulation of the FasL gene (Cippitelli et al., 2003). Cnb, the regulatory subunit of calcineurin, was 

recently shown to active NFκB-mediated TRAIL expression through direct binding to the integrin 

CD11b (Su et al., 2012).  

 

P53	  

The El-Deiry lab identified two potential p53 binding sites in the TRAIL promoter following 

observations that p53-inducing chemotherapies such as 5-FU and doxorubicin elevated TRAIL 

promoter activity (Kuribayashi et al., 2008). One of these binding sites was at -630 was shown to 

mediate p53-induced TRAIL promoter activity using luciferase reporters. Radiation has been 

reported to induce TRAIL expression and it has been hypothesized that TRAIL plays role in the 

bystander effects observed following radiation (Shareef et al., 2007; Unnithan and Macklis, 2004). 

The role of p53 in radiation-induced TRAIL expression should be explored since it is well 

accepted that ionizing radiation robustly induces p53.  

 

FOXO 

Overexpression of Foxo3a in prostate cancer cells was found to induce TRAIL by gene 

expression profiling (Modur et al., 2002). In silico analysis revealed a binding site in the TRAIL 

gene promoter between -121 and -138 that was validated by luciferase reporter construct 

mutations and EMSAs to be completely responsible for Foxo3a-induced TRAIL promoter activity. 

This study also revealed that TRAIL expression is significantly decreased in metastatic prostate 

cancer. Foxo3a-driven TRAIL upregulation has been recently described as the apoptotic 
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mechanism responsible for memory B cell loss that results from chronic HIV infection (van 

Grevenynghe et al., 2011).  

 

Unexplored binding sites  

Clearly there are several putative transcription factor-binding sites within the TRAIL gene 

promoter that have been unexplored. It is worth noting that only a few of the examined binding 

sites for a given transcription factor have turned out to be functionally important, as in the case of 

NFκB, AP-1, and SP-1, which have multiple putative binding sites in the TRAIL promoter. Oct-1 is 

involved in regulating several housekeeping genes and has a putative binding site on the TRAIL 

promoter. Interestingly, HDACi have been found to induce Gadd45 expression through Oct-1 

(Hirose et al., 2003). This observation along with the report that HDACi induces the TRAIL gene 

suggests that the direct examination of Oct-1 binding to the TRAIL promoter may be worth further 

investigation. The role of the heat shock elements in the proximal region of the TRAIL promoter 

may also be worth investigation as heat shock has already been linked to protection from TRAIL-

mediated cell death (Ozoren and El-Deiry, 2002).  

 

The MAPK pathway 

Cells transformed with HRASG12V were reported to have silenced expression of TRAIL due to 

hypermethylation of CpG islands in the TRAIL gene promoter that lie ~2,000bp upstream of the 

start of transcription (Lund et al., 2011). TRAIL could still be induced by interferon-γ in these 

transformed cells and the silencing could be reversed with decitabine, a DNA methyltransferase 

inhibitor. Mutations in KRAS during colon cancer progression are a common event in colon 

cancer (Bos et al., 1987; Forrester et al., 1987; Vogelstein et al., 1988). This may explain the 

silencing of TRAIL expression that has been noted in colon cancer, particularly during the 

progression from adenoma to carcinoma (Koornstra et al., 2003). Oncogenic RAS sensitizes cells 

to TRAIL-mediated apoptosis, potentially through MEK-dependent upregulation of DR4 and DR5 

(Nesterov et al., 2004). Thus, concomitant silencing of TRAIL expression may be required to 

prevent induction of TRAIL-mediated apoptosis during Ras transformation.  
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Other inducers 

A recent report found that pigment epithelium-derived factor (PEDF) induced the expression of 

TRAIL on the surface of macrophages (Ho et al., 2011). Further analysis revealed that PEGF also 

induces peroxisome proliferator-activated receptor-gamma (PPARγ), which binds to the TRAIL 

promoter to upregulate transcription at a PPAR-response element (PPRE). This represents yet 

another mechanism utilized by immune cells to induce the expression of TRAIL. Other molecules 

have been reported to induce TRAIL gene transcription but the underlying direct transcriptional 

mechanism has not been elucidated. Lipopolysaccharide (LPS), which is a component of gram-

negative bacteria, has been reported to induce TRAIL at higher concentrations (Halaas et al., 

2000), though an early report did not observe TRAIL-induction by LPS at lower doses (Griffith et 

al., 1999).  

 

Regulation of TRAIL activity by isoforms 

The human TRAIL gene spans ~20 kb and contains 5 exons and 4 introns that contain typical 

splice acceptor-AG/GT-splice donor consensus sites at their boundaries (Gong and Almasan, 

2000; Shapiro and Senapathy, 1987). The first exon encodes for the 21 amino acid 

transmembrane domain and the 17 amino acid cytoplasmic domain. Exons 4 and 5 encode for 

the amino acids in the extracellular domain that are responsible for the interaction of TRAIL with 

its receptors. Exon 5 also encodes for the C-terminal amino acids along with containing the 3’-

UTR and poly-A tail.  

 TRAIL is well known for its potent and cancer-selective apoptotic activity. However, it 

seems that this activity is unique to only one specific isoform of TRAIL among the 9 variants that 

have been reported to date (Figure 1.5). The first report of TRAIL isoforms identified three 

variants that involved variable inclusion of exons 2 and 3: the full length TRAILα, TRAILβ that 

lacks exon 3, and TRAILγ that lacks exons 2 and 3 (Krieg et al., 2003). Computational analysis of 

exons 2 and 3 revealed that both exons were flanked by consensus splice donor and splice 

acceptor sequences that are involved in post-translational alternative splicing. Interestingly, 

TRAILα and TRAILβ where localized to the cytoplasm whereas TRAILγ was associated with the 
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nuclear and cell surface membrane. A sequence analysis of TRAIL mRNA in granulosa tumor 

cells resulted in the identification of TRAILδ, which lacks exons 3 and 4 (Woods et al., 2008). The 

truncated TRAIL isoforms do not induce apoptosis like the full-length TRAIL (TRAILα) and it has 

been suggested that these variants are negative regulators of their full-length counterpart. No 

TRAIL variants other than the full length TRAIL detected in murine cells.  

 Recently, 7 alternatively spliced TRAIL variants were identified that were all truncated 

versions incapable of potentiating apoptosis: AK, E2, E3, E4, DA, BX424, and BX439 (Wang et 

al., 2011b). All of these isoforms contain common N-terminal sequences and possess the 

transmembrane helix but vary in the C-terminal region. The DA isoform lacks exon 3 and encodes 

for the same protein as TRAILβ and BX424 lacks exons 3 and 4, yielding the same protein as 

TRAILδ. BX439 completely lacks exons 2-4 but posses the same exons 1 and 5 as the full length 

TRAIL. AK and DA contain a unique exon not shared by any other reported isoforms. E2, E3, and 

E4 contain exons 1–2, 1–3, and 1–4, respectively, with an extended sequence at C-terminus. All 

of these variants, however, activated NFκB and the authors note the possibility that truncated 

TRAIL can play intracellular roles. Future studies should directly examine the ability of these 

various TRAIL isoforms to bind to TRAIL receptors.  

The abundance of these isoforms varied significantly across the tested cancer cell lines 

with THP-1 human leukemia cell line and BT-325 human glioma cell line expressing most of 

these variants. A notable exception among the cell line panel was the human colon cancer cell 

line HCT116 that only expressed the full length isoform.  
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Figure 1.5. Genomic structure of human TRAIL variants. Exonic sequences of the full-length 

TRAIL are shown in green whereas novel sequences are shown in yellow. 

 

 

SNPs in the TRAIL gene 

Due to the altered expression of TRAIL in various disease settings, there have been multiple 

efforts to identify single nucleotide polymorphisms (SNPs) in various patient populations. SNP 

analysis of peripheral blood samples found that having a T instead of a C at position -723 was 

significantly associated with sporadic breast cancer and decreased TRAIL mRNA levels (SNP1) 

(Pal et al., 2011) (Fig. 1.4). Luciferase assays in cell lines indicated that this mutation from C to T 

indeed repressed TRAIL transcriptional activity. In silico analysis found that this mutation is 

predicted to create an SP-1 binding site. The authors propose that SP3 is negatively regulating 

this SP1 site, though future studies will need to validate the mutation-induced putative binding site 

and address this possibility.  

Another SNP analysis of the TRAIL gene promoter revealed 4 SNPs that were highly 

polymorphic in healthy individuals (Weber et al., 2004). However, these SNPs were not 
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significantly associated with changes in TRAIL mRNA levels or with multiple sclerosis as a 

diagnostic or prognostic marker. The authors of the study note that SNP(1) is in an AP1 binding 

site, though they do not comment about other binding sites predicted at the other SNPs. 

Interestingly, both SNP3 and SNP4 each lie in p53 response element half-sites that the El-Deiry 

lab has previously reported and shown to be important for TRAIL induction in response to 

chemotherapy (Kuribayashi et al., 2008).  While these SNPs were not associated with basal 

TRAIL levels in this population, it would be interesting to determine if these SNPs affect p53-

induced TRAIL and response in chemotherapy-treated cancer patients.  

A SNP at the -716 position of the TRAIL gene promoter was identified but not associated 

with prostate cancer. Other TRAIL gene promoter SNP associations have been identified in other 

disease settings but have not been evaluated for its functional effects on TRAIL transcription: -

1525/-1595 and fatty liver disease (Yan et al., 2009). Other SNPs have been identified in coding 

regions such as position 1595 in exon 5 being linked with multiple sclerosis (Kikuchi et al., 2005). 

A small cohort study of healthy volunteers found 5 SNPs in TRAIL exons: 3 in the 3’-UTR at 

1525, 1588, and 1595 whereas the other two were in in exon 1 and 2 at positions 192 and 912 

(Gray et al., 2001). These two polymorphisms in the coding region did not result in any change in 

amino acid sequence. Another SNP study in bronchial asthma patients found 5 SNPs in the 

TRAIL gene with 1 SNP being in a coding region at 825 and 5 SNPs being in the 3’UTR at 1053, 

1202, 1438, 1501, and 1508 (Unoki et al., 2000).  

 

TRAIL expression in disease and physiology 

Altered expression levels of TRAIL been noted in several diseases relative to healthy controls. 

For instance, TRAIL mRNA levels are elevated in patients with multiple sclerosis (Huang et al., 

2000). Patients with systemic lupus erythematous or multiple sclerosis have elevated serum 

levels of soluble TRAIL (Lub-de Hooge et al., 2005; Wandinger et al., 2003). These clinical 

observations support a critical role for TRAIL in preventing autoimmune disorders, which may be 

explained by observation that TRAIL-knockout mice cannot induce thymocyte apoptosis 

(Lamhamedi-Cherradi et al., 2003). Breast cancer patients with brain metastases have 
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downregulated TRAIL mRNA levels (Bos et al., 2009). TRAIL expression silencing has also 

been noted in metastatic prostate cancer (Modur et al., 2002) and colon cancer (Koornstra et al., 

2003). A role for TRAIL has been implicated in particular types of cellular differentiation such as 

colonic epithelial cells through a reciprocal expression relationship with PKCε (Gobbi et al., 

2012). The El-Deiry lab has also implicated TRAIL-receptor signaling in the DNA damage 

response to radiation as well as the late effects of radiation (Finnberg et al., 2005; Finnberg et 

al., 2008). 

  

1.4 Regulation of Foxo3a Activity 

Overview 

FOXO is a subfamily of the Forkhead transcription factors that regulates genes involved in 

numerous cellular processes that include metabolism, longevity, tumor suppression, and 

development (Calnan and Brunet, 2008). The subfamily includes 4 mammalian members: Foxo1, 

Foxo3a, Foxo4, and Foxo6. Among the FOXO family, Foxo1 and Foxo3a have been the most 

studied with Foxo3a being previously described as a direct regulator of the TRAIL gene through a 

FOXO binding site in the TRAIL gene promoter (Modur et al., 2002). The tumor suppressor role is 

ascribed to FOXOs based on their ability to induce target genes such as p21, TRAIL, and Bim 

that induce cell cycle arrest, apoptosis, and/or autophagy. FOXO proteins bind to the consensus 

sequence: TTGTTTAC (Furuyama et al., 2000; Xuan and Zhang, 2005). FOXOs are regulated 

predominantly by post-translation modifications (PTMs) that currently include phosphorylation, 

acetylation, and ubiquitination. These modifications often affect FOXO subcellular localization, 

typically involving 14-3-3 proteins and the nuclear localization and nuclear export sequences that 

are conserved among FOXOs. Altering FOXO protein levels through changes in transcription or 

causing protein degradation by polyubiquitination can also regulate FOXOs. FOXO members 

often associate with other proteins that can alter their affinity for particular target genes, alter the 

activity of the interacting protein, or can directly or indirectly mediate post-translational 

modifications (PTMs) to FOXOs. Together, these mechanisms allow for fine-tuned responses to a 

variety of external stimuli that can be transduced through FOXOs. While these interactions are 
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variable among FOXOs, we will primarily focus on Foxo3a due to its intimate involvement with 

TRAIL gene regulation (Figure 1.6).  

 

Figure 1.6. Multi-modal regulation of FOXO activity. Foxo3a localization can be regulated by 

phosphorylation events that dock the transcription factor to 14-3-3 proteins in the cytoplasm. 

These kinases include Akt, SGK, ERK, and IKK. Conversely, the kinases AMPK and MST1 

phosphorylate Foxo3a and result in its activation. In addition to inhibitory phosphorylation, ERK 

also activates MDM2 to ubiquitinate Foxo3a and cause its proteasomal degradation. Akt and IKK 

can also induce the proteasomal degradation of Foxo3a. JNK is capable of phosphorylating 14-3-

3ζ at Ser184, which interrupts its cytoplasmic interaction with Foxo3a. The phosphatase PP2A 

reverses Akt-mediated Foxo3a inactivation by dephosphorylating Foxo3a. Acetylation of Foxo3a 

occurs by CBP in its DNA-binding domain, which reduces its transcriptional activity. The 

deacetylase Sirt1 can also decrease Foxo3a activity, perhaps by deacetylating different residues 

than those that CBP affects. Sirt1 also causes the Skp2-dependent ubiquitination and 

proteasomal of Foxo3a, though Foxo3a decreases the transcription of Skp2. Foxo3a activity and 

gene specificity can also be positively regulated and tuned by association with β-catenin, STAT5, 
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and Smad3 and Smad4. FoxoG can directly bind and attenuate Foxo3a activity, particularly with 

respect to the complex formed between Foxo3a, Smad3, and Smad4.  

 

FOXO regulation by kinases 

Akt is a potent regulator that phosphorylates 3 residues that are conserved among FOXOs (Biggs 

et al., 1999; Brunet et al., 1999; Kops et al., 1999; Nakae et al., 1999). Interestingly, Foxo6 lacks 

one of the 3 residues phosphorylated by Akt and is not regulated by changes in localization 

(Jacobs et al., 2003). These Akt-mediated phosphorylation events create docking sites for 14-3-3 

proteins on FOXOs, expose their nuclear export sequences, and affects the accessibility of their 

nuclear localization sequences (Brunet et al., 2002; Obsilova et al., 2005). Serum glucocorticoid 

kinase (SGK) is also capable of phosphorylating FOXOs at the same residues as Akt. Several 

other FOXO residues are phosphorylated to facilitate its interaction with the nuclear export 

proteins Ran and Crm1 (Rena et al., 2002; Zhao et al., 2004). Some phosphorylation sites are 

within the DNA binding domain and decrease binding affinity through electrostatic repulsion 

(Matsuzaki et al., 2005). The stress-activated kinases JNK and MST1 phosphorylate Foxo3a 

(Lehtinen et al., 2006) and Foxo4 (Essers et al., 2004; Oh et al., 2005), respectively, which 

results in their nuclear translocation. These events are independent of and antagonize the Akt-

mediated phosphorylation events. AMPK phosphorylates Foxo3a at two sites and results in a 

distinct response that activates transcription of FOXO target genes specifically involved in energy 

metabolism and stress resistance (Greer et al., 2007).   

 

Regulation of FOXO activity by transcription cofactors  

FOXO is also controlled and fine-tuned by numerous transcription cofactors in response to 

various stimuli in a highly context-dependent manner. For instance, while Foxo1 function is 

inhibited by CBP-mediated acetylation, this allows for recruitment of the CBP coactivator complex 

to transcribe particular genes. FOXO proteins also bind β-catenin during oxidative stress, which 

increases FOXO target gene transcription and decreases TCF target gene transcription involved 

in Wnt signaling, which requires β-catenin as a cofactor for transcription (Almeida et al., 2007).  
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Foxo1 also interacts with the PPARγ co-activator PGC-1 in a manner that is disrupted during 

insulin signaling through Akt, allowing PGC-1 to interact with PPARγ (Li et al., 2007; Schilling et 

al., 2006). FOXO also interacts with Sirt1, a histone deacetylase, in a manner than increases 

transcription of cell cycle arrest gene and decreases apoptotic gene transcription by an undefined 

mechanism (Brunet et al., 2004; Daitoku et al., 2004; van der Horst et al., 2004).  

Association with particular transcription factors also controls tuning of FOXO target gene 

transcription. One example is the association of Foxo3a and the transcription factor RUNX3 to 

bind the BIM promoter (Yamamura et al., 2006). FOXOs also interact with SMAD3 and SMAD4 to 

induce p21waf1 transcription (Seoane et al., 2004) and Stat5 to induce Cited 2 (Bakker et al., 

2004). FoxG (Seoane et al., 2004), PPARγ (Dowell et al., 2003), and the androgen receptor (Li et 

al., 2003) also interact with FOXOs but antagonize their transcriptional activity. Differential FOXO 

transcriptional activity can be further modulated by competition or cooperation with other 

transcription factors such as p53 (Nemoto et al., 2004) or Notch (Kitamura et al., 2007) for mutual 

target genes.  

 

Other regulators of FOXO   

Activation of cytoplasmic FOXO may be accomplished through inactivation of the phosphorylating 

kinases that antagonize FOXO activity and/or activation of phosphatases. Protein phosphatase 

2A (PP2A) may be a culprit phosphatase as it was immunoprecipitated in a complex with Foxo3a 

(Singh et al., 2010). The localization of FoxO4 is also controlled by monoubiquitination triggered 

by oxidative stress via an unclear mechanism (van der Horst et al., 2006). Acetylation is another 

mode of regulating subcellular localization that can occur in response to oxidative stress and is 

carried out by CBP and PCAF (Senf et al., 2011; Yoshimochi et al., 2010) (Brunet et al., 2004; 

Daitoku et al., 2004; Fukuoka et al., 2003). The acetylation of Foxo3a by CBP actually decreases 

transcriptional activity, which is unexpected given that transcription factor acetylation is typically 

activating. The crystal structure of DNA-bound Foxo3a revealed that the CBP acetylation events 

occur in the DNA binding domain and likely interrupts the protein:DNA interaction (Tsai et al., 

2007). Acetylation can also affect the localization of FoxO proteins in the nucleus, as 
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demonstrated by the increased association of Foxo1 to PML following acetylation (Kitamura et al., 

2005).  

Controlling FOXO proteins levels through degradation or changes in transcription is another 

mode of FOXO activity regulation. One avenue of controlling FOXO protein levels is through 

protein degradation, which is caused by FOXO phosphorylation by Akt in addition to localization 

changes (Matsuzaki et al., 2003; Plas and Thompson, 2003). In the case of Foxo1, this 

degradation is caused by polyubiquitination executed by the SCFskp2 complex (Huang et al., 

2005). Skp2 has been recently shown to polyubiquitinate Foxo3a (Wang et al., 2011a), though 

this relationship is complicated by direct negative regulation of Skp2 mediated by direct binding of 

Foxo3a to its gene promoter (Wu et al., 2012). Foxo3a is also degraded following phosphorylation 

by IkappaB kinase (Hu et al., 2004a) or Akt (Plas and Thompson, 2003).  

 

 

1.5 Scope of This Thesis Research  

The El-Deiry lab began working on the TRAIL pathway with the initial cloning and discovery of 

DR5 as a p53 target gene that was uncovered by subtractive hybridization screening probing 

doxorubicin-induced transcripts (Wu et al., 1997). Other groups simultaneously discovered and 

cloned DR5 as a TRAIL receptor through structure-based methods (Pan et al., 1997a; Sheridan 

et al., 1997). Follow up studies from the El-Deiry lab found DR5 to also be induced by genotoxic 

stress and TNFα (Sheikh et al., 1998) and identified loss of function mutations within the DR5 

gene in head and neck cancers. The murine homologue of DR5, TRAIL-R, in mice was also 

identified by the El-Deiry lab (Wu et al., 1999). The lab later generated the first TRAIL-R-/- 

transgenic mouse in an effort to potentially identify an oncogenic phenotype (Finnberg et al., 

2005; Finnberg et al., 2008). While the TRAIL-R-/- mice exhibited apoptotic defects, they also 

showed signs of bronchopneumonia and others symptoms that were reminiscent of the late 

effects of gamma radiation, a poorly understood phenomenon that is a devastating clinical 

problem where patients develop severe lung inflammation several weeks following radiation. 
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These findings generated the hypothesis that increased TRAIL signaling may suppress 

inflammation and that upregulating TRAIL may ameliorate the late effects of gamma radiation.  

The lab has described a number of determinants of TRAIL sensitivity such as FLIP (Kim 

et al., 2000), Bcl-XL, Bcl-2 (Burns and El-Deiry, 2001), Mcl-1, cIAPs, and myc (Ricci et al., 2004; 

Ricci et al., 2007). Induction of the TRAIL gene was also described by the lab in response to 

interferon-beta (Choi et al., 2003) and chemotherapy through a p53 binding site in the TRAIL 

gene promoter (Kuribayashi et al., 2008). Taking these studies together, the lab has a rich 

history of studying TRAIL gene regulation, its proapoptotic biology, and cellular determinants of 

TRAIL sensitivity. Due to role of TRAIL signaling as a suppressor of tumors and inflammation, 

we sought to identify small molecules that could upregulate endogenous TRAIL production as a 

potentially novel antitumor therapy and to potentially rescue the late effects of gamma radiation.  

Recombinant TRAIL has been intensely developed as an antitumor agent due to its 

potent and cancer-selective cytotoxicity. These studies aim to identify a small molecule inducer of 

the TRAIL gene that functions via a p53-independent mechanism and overcomes therapeutic 

limitations of recombinant TRAIL due to its drug properties. While gene regulation of DR4 and 

DR5 has been well described, the regulation of the TRAIL gene has received less attention. We 

aimed to identify TRAIL-inducing compounds to develop novel anticancer drugs in addition to 

elucidating the molecular mechanism responsible for induction of the TRAIL gene to perhaps 

enhance the understanding of TRAIL gene regulation. To accomplish these goals, we performed 

a series of studies as outlined by the following research aims that capitulate the scope of this 

thesis research.    

 

Research Aim I 

Identify TRAIL-inducing compounds (TICs) that induce TRAIL gene transcription and cancer-

specific cell death 

 

Research Aim II 

Evaluate the lead TIC as a TRAIL-inducer and antitumor agent in vitro and in vivo 
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Research Aim III 

Elucidate the molecular mechanism of TIC-induced TRAIL gene transcription 

 

In summary, these studies have led us to the identification of a potentially first-in-class agent 

TIC10, a small molecule TRAIL-inducing compound. We demonstrate TIC10’s direct effector 

mechanisms, novel bystander effects involving normal cells, and upstream signaling pathways 

that specifically control its therapeutic effects. TRAIL is a natural effector mechanism for 

suppressing cancer that has evolved to allow for the immune surveillance of cancer and 

consequently lends itself as an attractive endogenous drug target in cancer treatment. We 

describe advantages over current TRAIL-based therapies that have important clinical 

implications, such as extending the use of this pathway in brain malignancies and overcoming 

administration barriers that potentially limit efficacy. We clearly delineate how the TRAIL gene is 

induced in response to TIC10 and upstream mechanisms that cause those changes. It is 

important to note that these novel TRAIL-mediated anti-tumor mechanisms allow for the 

promising safety and efficacy profile of TIC10 that is demonstrated with tumor response and 

overall survival endpoints in subcutaneous, orthotopic, and transgenic mouse models of cancer. 

The mechanism of action for TIC10 has implications beyond the molecule itself, suggesting that 

Akt and ERK are particularly critical regulators of Foxo3a and supports the combination of Akt 

and ERK inhibitors to gain Foxo3a- and TRAIL-dependent efficacy. This mechanism also 

provides insight as to the underlying mechanism of synergy observed between inhibitors of the 

MAPK and PI3K/Akt pathways that have been previously noted in the literature (Ebi et al., 2011; 

Sos et al, 2009; Edwards et al, 2006).  
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CHAPTER 2 

IDENTIFICATION OF TIC10 AS A SMALL MOLECULE INDUCER OF TRAIL 
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2.1  Abstract  

Recombinant TRAIL is a potent inducer of apoptosis but possesses efficacy-limiting properties 

such as a short half-life and poor biodistribution. We performed a high-throughput screen for 

small molecules capable of upregulating a TRAIL gene transcription reporter using a section of 

the human TRAIL gene promoter that excludes the previously identified p53 binding site. Out of 

the resulting “hit” compounds, we selected TRAIL-inducing compound 10 (TIC10) as the lead 

compound for further studies based on its ability to induce TRAIL at the cell surface and cell 

death in cancer cells but not normal cells. We found that TIC10 causes a dose-dependent 

increase in luciferase reporter gene activity for TRAIL transcription and TRAIL mRNA in p53-

deficient HCT116 cells. This transcriptional upregulation results in an elevated amount of TRAIL 

on the surface of tumors as measured by flow cytometry in a panel of several human cancer cell 

lines. The induction of TRAIL occurred reproducibly in many cancer cell lines but was only 

evident after 48 hours of incubation or longer. Interestingly, short-term incubation with TIC10 was 

still sufficient to induce TRAIL at the later time point in the absence of drug. Together, these data 

indicate that TIC10 upregulates TRAIL transcription in a p53-independent manner and causes a 

sustained upregulation of TRAIL on the surface of tumor cells.  

 

2.2  Introduction 

While current TRAIL-based therapies are costly to produce for clinical applications and may be 

limited by stability and/or biodistribution, endogenous TRAIL is a robust and selective tumor 

suppressor. Endogenous TRAIL naturally lends itself as a drug target to restore anti-tumor 

immunity, the utility of which has been recently highlighted by the FDA approval of ipilimumab, a 

CTLA-4 targeted monoclonal antibody with unparalleled efficacy in metastatic melanoma (Ji et al., 

2011). We hypothesized that upregulation of TRAIL gene expression by a small molecule would 

lead to a potent and novel anti-tumor mechanism by improving the biodistribution and 

pharmacokinetic properties of TRAIL such as increasing its effective half-life as well as increasing 

its concentration within the tumor microenvironment.  

 As a natural tumor suppressor, TRAIL is an attractive anti-neoplastic agent due to its 
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favorable safety and activity profile, which results from its ability to selectively induce apoptosis in 

cancer cells. Despite promising preclinical activity, clinical trials with rhTRAIL in human cancer 

patients have been met by limited success. Molecular properties that may lower the efficacy of 

TRAIL include protein instability, short serum half-life (~30 minutes), inability to cross the blood-

brain barrier, and loss of activity associated with the recombinant protein compared to the 

endogenous protein due to differences in PTMs that differ across cellular expression systems 

such as bacteria.  

 There are practical issues associated with the use of therapeutics that are recombinant 

proteins such as high cost of production and intravenous administration. Some of these 

limitations have been recognized by the field and have resulted in circumventing innovations. 

Some of the most developed examples of this are the TRAIL-receptor agonist antibodies 

(reviewed in Chapter 1) such as mapatumumab and lexatumumab that have prolonged half-lives 

and are being explored in clinical trials (Abdulghani and El-Deiry, 2010). However, these 

antibodies can only bind one of the two pro-apoptotic receptors and tend to bind bivalently unlike 

TRAIL. In conclusion, TRAIL is a potent cancer cell-specific inducer of apoptosis that has 

demonstrated some efficacy in clinical trials as a recombinant protein but may be therapeutically 

hindered by several molecular and practical limitations that include stability, half-life, 

biodistribution, expense, and administration route.  

TRAIL gene induction by a few small molecules has been previously reported such as 

histone deacetylase (HDAC) inhibitors (Nebbioso et al., 2005) and the Bcr-Abl tyrosine kinase 

inhibitor imatinib has been reported (Kikuchi et al., 2007). However, these small molecules clearly 

have other targets and intended functions that may yield different efficacy and safety profiles than 

a small molecule with fewer targets that specifically induces TRAIL and TRAIL-mediated 

apoptosis. Thus, we screened for small molecules capable of inducing the endogenous TRAIL 

gene to overcome limitations of current TRAIL-based therapeutics with the goal of developing a 

new class of TRAIL-based therapies possessing superior antitumor properties.   
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2.3 Materials and Methods 

Cell Culture 

All cell lines were obtained from ATCC except HCT116 Bax-/- and HCT116 p53-/- cells that were a 

gift from Bert Vogelstein (Johns Hopkins University, Baltimore, MA) and glioblastoma cell lines 

that were kindly provided by Akiva Mintz (Wake Forrest University, Winston-Salem, NC). Cells 

were maintained at 5% CO2, 95% air, 37°C in water-jacketed incubators (Forma Scientific). Cell 

culture media was typically obtained from Gibco and mixed with 10% sterile-filtered fetal bovine 

serum and 1% penicillin/streptomycin. Parental cell lines were maintained in canted neck, tissue 

culture treated flasks (BD Falcon). For most experiments, cells were propagated in 6-well culture 

plates (Corning Incorporated) and allowed to adhere for a minimum of 12 hours prior to drug 

treatment in fresh media. Cells were enumerated using a Cellometer Auto T4 (Nexcelom 

Biosciences).  

 

Reagents 

D-luciferin (Gold BioTechnology, Inc.) was reconstituted in PBS and stored at -80°C. Propidium 

iodide was suspended in dH2O and stored at -20°C.  

 

High throughput Screening 

We performed cell-based screening for TRAIL-inducing using a luciferase reporter assay. The 

reporter for the screen was luciferase under transcriptional control of the first 504 base pairs of 

the human TRAIL gene promoter. This construct was transfected into HCT116 Bax-/- that were 

seeded into 384-well black plates (Corning) at a density of 5 × 104 cells per well. Compounds 

were added to the well at concentrations of 20, 200, 500, and 1000 nM using robotically 

controlled pin tools (Biomek). Treatments were carried out in duplicate and plates were treated in 

duplicate to allow for readout of the reporter as well as a cell viability assay. Reporter activity and 

cell viability was imaged at 12, 24, 36, and 48 hours following treatment using an IVIS imaging 

system (Xenogen). The luciferase reporter signal was normalized to cell viability for data 

interpretation.  



www.manaraa.com

35 

 

RT-qPCR analysis 

Total RNA was extracted using RNeasy Minikit (Qiagen) by following the manufacturer’s 

instructions. cDNA was generated using SuperScript II (Invitrogen) with 1 µg of RNA and oligodT. 

Primers were: TRAIL forward (CAGAGGAAGAAGCAACACATT), TRAIL reverse 

(GGTTGATGATTCCCAGGAGTTTATTTTG), GAPDH forward (CCACATCGCTCAGACACCAT), 

GAPDH reverse (GGCAACAATATCCACTTTACCAGAGT). PCR amplification was performed 

with the Applied Biosystems 7900HT Fast Real-time Detection System. Samples were 

standardized to 10 ng/µl and 20 ng of cDNA per sample was then utilized as a template for real-

time PCR using a SYBR Green Master Mix (Qiagen Corp, USA).  Quantitation used the 

2∆∆Ct method of crossing thresholds (Livak and Schmittgen, 2001) with GAPDH as the 

endogenous control for normalization.  Reactions were performed in 384 well optical plates in a 

7900HT instrument (Applied Biosystems), with 10ul reaction volumes.  Data analysis used the 

ABI PRISM 7900 Sequence Detection System 2.2 software. To exclude the possibility of genomic 

DNA contamination, control PCR reactions with no cDNA template and No-RT control samples 

were also performed for each gene-specific primer set. Replicates of each PCR reaction were 

performed and the resultant data was averaged.  

 

Surface TRAIL expression by flow cytometry 

Cells were harvested by trypsinization and rinsed once in PBS. Cells were then fixed in 1mL of 

4% paraformaldehyde in PBS for 20 minutes at room temperature. Cells were then rinsed twice in 

PBS and incubated with the anti-TRAIL primary antibody (Abcam) at 1:200 in PBS overnight at 

4°C. Cells were rinsed twice and incubated with anti-Rabbit Alexafluor 488 (Invitrogen) at 1:250 

for 1 hour at room temperature protected from light. Cells were rinsed in PBS, resuspended in 

300 µL PBS, and analyzed by flow cytometry.  
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Cell cycle/Sub-G1 analysis 

Cells were harvested from log-phase growth in cell culture in 6-well plates under indicated 

treatment conditions using brief trypsinization and collecting both adherent and floating cells. 

Cells were centrifuged for 5 minutes at 1100RPM, rinsed in PBS, and resuspended in .5mL of 

PBS. 5mL of chilled 80% ethanol was added dropwise while vortexing. Cells were then stored at 

4°C for 30 minutes and further processed or stored at 4°C for analysis later. Cells were then 

centrifuged, washed in 2mL of PBS, and resuspended in 1mL of PBS. .5mL of phosphate-citric 

acid (.2M Na2HPO4, 4µM citric acid, pH 7.8) was added and the solution was incubated for 5 

minutes followed by centrifugation. Cells were then resuspended in 300µL of PI/RNase staining 

solution (50 µg/mL PI and 250 µg/mL RNase A in PBS) and analyzed by flow cytometry. Data 

was processed using WinMDI version 2.8 software.  

 

Mass spectrometry  

Samples were analyzed on an Acquity Ultra Performance Liquid Chromatography (UPLC) system 

coupled to a Waters SYNAPT qTOF mass spectrometer. The column, which was kept at 40°C, 

was a Waters UPLC C18 2.1×50 mm with 1.7 µm particles. The binary solvent system included 

A. water containing 0.1% formic acid and 10mM ammonium formate and B. acetonitrile containing 

0.1% formic acid. The gradient started from 10% A with a linear gradient to 50% B. The total run 

time including re-equilibration step was 8 min with a flow rate of 0.200 ml/min. The temperature of 

the sample organizer was set at 8°C. Approximately 2pmol of compound was injected. The 

compound was analyzed by electrospray ionization in positive ion mode. The data were collected 

at mass range of m/z 50–1000 with a scan duration of 0.2 sec. The source temperature was set 

at 120°C and nitrogen was used as desolvation gas (700 L/h) at 400°C. The voltages of the 

sampling cone and capillary were 35 V and 3.5 kV, respectively. Leukine Enkephalin was used as 

the lockspray reference compound (10 µl/min; 10 sec scan frequency). Tandem mass 

spectrometry was used for the generation of fragment ions. MS/MS was performed with a 

collision energy ramp from 20 to 50V. Elemental composition and assignment of structures to 

observed fragment ions were performed using MarkerLynx software. 
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Production of Recombinant TRAIL 

30mL of LB with ampicillin (100µg/mL) was inoculated at 1:10,000 with bacteria transformed with 

the His-tagged TRAIL construct and incubated overnight in the shaker. The next day, the 

overnight culture was diluted 100 fold in LB with ampicillin and incubated for 2 hours in the 

shaker. IPTG was added at .5 mM working concentration and grown for 2.5 hours in the shaker. 

1mL samples were taken before and after induction with IPTG. Cells were pelleted at 7000 RPM 

for 10 minutes and resuspended in 8mL of binding buffer (50 mM HaH2PO4, 300mM NaCl, 10mM 

imidazole, 10mM β-mercaptoethanol, pH 8.0). Lysozymes was added at 1mg/mL and incubated 

on ice for 30 minutes. The mixture was sonicated (3M, setting 2.5, 20s X 4) and centrifuged at 

17,000 RPM for 30 minutes. The supernatant was removed and 1mL of Ni-NTA slurry (Invitrogen) 

was added and mixed at 4°C while rotating for 1 hour. The beads were centrifuged at 1000 RPM 

for 5 minutes at room temperature and 50uL was removed for subsequent analysis. The beads 

were resuspended in 2mL of Washing Buffer (50mM NaH2PO4, 300mM NaCl, 20mM imidazole, 

10mM β-mercaptoethanol, pH 8.0) and loaded into a small empty column. After the beads were 

packed, the outlet was unstopped, and the column was washed with 2 column volumes of 

Washing Buffer. The protein was eluted with 700µL of Elution buffer (50mM NaH2PO4, 300mM 

NaCl, 250mM imidazole, 10mM β-mercaptoethanol, pH 8.0) for 3 times and collected as separate 

fractions. The induction and purity of fractions were determined by standard SDS-PAGE. Dialysis 

was performed twice in 1L of PBS containing 30% glycerol and 10mM β-mercaptoethanol for 1 

hour at 4°C. The protein concentration was determined by BioRad protein assay according to the 

manufacturer’s protocol.  

 

Statistical Analyses. For pair-wise comparisons, we analyzed data by the Student’s two-tailed t 

test using Excel (Microsoft).  
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2.4 Results 

Selection of TIC10 as a lead TRAIL-inducing compound 

To identify small molecule inducers of the human TRAIL gene, we screened for small molecules 

capable of upregulating TRAIL gene transcription using the NCI Diversity Set II library of 2000 

synthetic compounds. As readout for the screen, we used a luciferase reporter activity in TRAIL-

resistant HCT116 Bax-/- human colon cancer cells under transcriptional controls of the first 504 

base pairs upstream of the start of transcription in the human TRAIL gene promoter. This region 

excludes the p53 DNA-binding response element that we previously identified (Kuribayashi et al., 

2008).  This TRAIL-resistant cell was selected for screening so that TRAIL upregulation would not 

induce cell death, which would attenuate the bioluminescent signal. Gen Sheng Wu constructed 

the luciferase reporter and Gabriel Krigsfeld and Patrick Mayes conducted the primary screen. 

This screen yielded 9 small molecules that were capable of reproducibly upregulating the reporter 

by greater than 2-fold at or below a dose of 1 µM (Figure 2.1).  TIC3 is not discussed, as the 

compound was not available for further study. The majority of the TRAIL-inducing compounds 

(TICs) upregulated reporter activity at 1µM with the exception of TIC6, which increased reporter 

activity 3-fold at doses ranging 20 nM to 1 µM. The peak reporter activity was 4-fold induction by 

TIC4 at 24 hours and a dose of 1 µM. We then validated the TRAIL-induction observed with the 

luciferase reporter assay by RT-qPCR and found that TIC4, TIC8, TIC9, and TIC10 caused a 

significant increase in TRAIL mRNA levels at a dose of 5 µM (Figure 2.2A). Interestingly, only 

TIC9 and TIC10 induced an upregulation of TRAIL at the cell surface (Figure 2.2B).  

 We sought to select a lead TIC that was capable of inducing cancer-specific cell death in 

addition to TRAIL gene transcription. We tested the ability of TICs to induce Sub-G1 content in 

HCT116 p53-/- cells, which are a human colon carcinoma cell line, and HFF cells, which are 

normal untransformed human foreskin fibroblasts. We found that TIC9 induced the most cell 

death of HCT116 p53-/- cells with >50% Sub-G1 content but that the compound also induced cell 

death in normal cells as well (Figure 2.3). TIC10 induced the second highest amount of Sub-G1 

content of the HCT116 p53-/- cells without cell death induction in the normal cells. Although the 

amount of Sub-G1 content was modest, we reasoned that perhaps higher doses of TICs might 
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result in higher amount of cell death. Indeed 5 µM doses of TICs induced higher levels of Sub-G1 

content for almost all TICs but TIC9 and TIC10 where again clearly the most potent compounds, 

inducing Sub-G1 levels of >50% (Figure 2.4). Thus, we selected TIC10 for further study based on 

its selective cytotoxic activity against cancer cells.  

 

Figure 2.1. Identification of TRAIL-inducing compounds. (A) Activity of luciferase reporter in 

HCT116 Bax-/- cells under transcriptional control of the first 504 base pairs of the human TRAIL 

gene promoter upstream of the start of transcription (n=3). Working concentrations of TICs 

indicated on the x-axis in nanomolar. Data is normalized to cell viability under the same 
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conditions and relative to DMSO-treated conditions for each time point. Error bars indicate s.d. of 

replicates. (B) Structure of TRAIL-inducing compounds.  

 

Figure 2.2. Validation of TIC-induced TRAIL. (A) RT-qPCR analysis of TRAIL mRNA levels in 

HCT116 p53-/- cells incubated with TICs (5 µM, 48 hr, n=3). Data is normalized to GAPDH mRNA 

levels. (B) Surface TRAIL analysis of HCT116 p53-/- cells incubated with TICs (5 µM, 72 hr, n=3). 

Error bars indicate s.d. of replicates. *P < 0.05 between the indicated condition and controls. 
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Figure 2.3. Cell death levels in normal and tumor cells with TIC treatment. (A) Sub-G1 

content of HCT116 p53-/- treated with TICs (1 µM) for indicated time point  (n=3). (B) Sub-G1 

content of HFFs treated with TICs (1 µM) for 72 hours (n=3). Error bars indicate s.d. of replicates.  
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Figure 2.4. Cancer cell death induced by TICs. (A) Exemplary cell cycle profiles of HCT116 

p53-/- treated with TICs (5 µM, 72 hr). (B) Sub-G1 quantification of HCT116 p53-/- treated with 

TICs (5 µM, 72 hr, n=3). Error bars indicate s.d. of replicates. **P < 0.005 between the indicated 

condition and controls. 
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TIC10 causes a sustained and p53-independent induction of TRAIL  

TIC10 induced TRAIL promoter-dependent transcriptional activity of a luciferase reporter 

construct under regulatory control of the first 504 base pairs in a time- and dose-dependent 

manner in HCT116 Bax-/- cells (Figure 2.5A). Interestingly, the reporter activity was not 

upregulated by TIC10 prior to 48 hours. In accordance with this result, TIC10 caused a dose-

dependent increase in TRAIL mRNA (Figure 2.5B-C) in p53-deficient HCT116 cells. We then 

tested if the TIC10-induced TRAIL transcription results in an increase in the amount of TRAIL 

localized to the cell surface of cancer cells. TIC10 indeed elevated surface TRAIL in a panel of 

several cancer cell lines that include human colon and breast cancers. (Figure 2.5D). This 

increase in surface TRAIL was also found to be p53-independent.  

In accordance with the reporter assays, a time course analysis found that TRAIL was 

localized to the cell surface as a late event, peaking at 72 hours post-treatment in a dose-

dependent manner (Figure 2.6A). We next tested if this induction of TRAIL as a late event 

requires continuous incubation with TIC10 or if this induction still occurs with short-term exposure 

to the molecule. We found that incubating with TIC10 for only 24 hours will still induce TRAIL on 

the cell surface at 48 hours following removal of the drug (Figure 2.6B). However, the longer the 

cells were incubated with TIC10, the larger the magnitude of TRAIL induction at 72 hours.  

 Thus TIC10 exposure leads to a significant and sustained presence of TRAIL on the cell surface 

of cancer cells in a time- and dose-dependent manner. 

 Based on the in vitro tumor-selective activity of TIC10 and its ability to induce the TRAIL 

in a p53-independent manner in several cancer cell lines, we selected TIC10 for further efficacy, 

safety, and mechanistic studies. We next confirmed the proposed structure of TIC10 using mass 

spectrometry. The observed mass and predicted elemental composition of the compound 

matched the expected mass and elemental composition (Figure 2.7). The fragmentation of TIC10 

yielded several fragments that fit within the parent structure and fragment ions that fit with 

multiple regions of the parent compound that represent potential fragments.  
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Figure 2.5. TIC10 induces TRAIL in a p53-independent manner. (A) Activity of luciferase 

reporter in HCT116 Bax-/- cells under transcriptional control of the first 504 base pairs of the 

human TRAIL gene promoter upstream of the start of transcription (n=3). Data is normalized to 

cell viability under the same conditions and relative to DMSO-treated conditions for each time 

point. (B) Semiquantitative RT-PCR analysis of TIC10-induced TRAIL messenger RNA in 

HCT116 p53-/- cells (48 hr) following treatment with DMSO or TIC10 (.5, 1, 5, and 10 µM from left 

to right). (C) RT-qPCR analysis of TIC10-treated HCT116 p53-/- cells (48 hr, n=4). (D) Surface 

TRAIL levels induced by TIC10 in a panel of cancer cells (10 µM, 72 hr, n=3). Error bars indicate 

s.d. of replicates. *P < 0.05 between the indicated condition and controls.  
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Figure 2.6. TIC10 causes a sustained induction of TRAIL on the surface of tumor cells. (A) 

Surface TRAIL levels in HCT116 p53-/- cells following TIC10 treatment at indicated conditions and 

time points (n=3). (B) HCT116 p53-/- TRAIL surface levels by flow cytometry at 72 hr following 

TIC10 treatment initiation (5 µM, n=3). Cells were treated for the indicated time of pre-incubation 

and then drug-free media was exchanged for the remaining time period until analysis at 72 hr. 

Error bars indicate s.d. of replicates. *P < 0.05 between the indicated condition and controls. 
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Figure 2.7. Validation of TIC10 structure by mass spectrometry. (A) Structure and mass of 

TIC10. (B) Mass spectrometry analysis of TIC10 showing the parent compound (top panel) and 

major fragments (bottom panel). (C) Potential structures of major fragments.   

 

2.5  Discussion  

The top 10 TICs represent a class of structurally diverse molecules that are potentially capable of 

upregulating TRAIL gene transcription at or below 1 µM, which is a potentially achievable dose in 

vivo.  Interestingly, TIC9 was breflate, which is the prodrug of brefeldin A that is a classical 

inducer of endoplasmic reticulum (ER) stress and has been reported to induce high levels of p53-

independent cell death (Shao et al., 1996). These observations raise the possibility that ER stress 

induces the TRAIL gene, though this observation will have to be validated with other classical ER 

stressors such as tunicamycin and thapsigargin and directly tested with appropriate molecular 

studies in the future. ER stress has been previously linked to the TRAIL pathway though induction 

of the TRAIL gene itself has not been described: (1) tunicamycin induces DR5 through IRE1α and 
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ATF6 (Jimbo et al., 2003); (2) ER stress triggers the intrinsic cell death pathway in a caspase-8-

dependent manner (Jiang et al., 2007); (3) the acetic acid analogue α-TEA induces DR5 in a 

JNK/CHOP-dependent manner (Tiwary et al., 2010); (4) proteasome inhibitor-induced DR5 

through CHOP (Yoshida et al., 2005); (5) direct positive regulative of the DR5 gene by CHOP 

binding to its promoter (Yamaguchi and Wang, 2004; Zou et al., 2008).  

Only TIC9 and TIC10 were capable of elevating TRAIL expression on the cell surface. 

The lack of surface TRAIL induction by the other TICs despite elevation of TRAIL mRNA 

suggests that the TICs may differ in mechanism and potentially cause differential induction of 

TRAIL secretion and/or isoforms. Differences in TRAIL subcellular localization with different 

isoforms have been reported (Krieg et al., 2003). 

 TIC9 and TIC10 induced cell death of cancer cells much more strongly than the other 

TICs. The unique ability of TIC9 and TIC10 to cause a significant amount of cancer cell death 

may be related to their apparently unique ability to induce TRAIL at the cell surface. The 

structural diversity, variable kinetics of TRAIL induction, and differences in TRAIL localization 

induced by TICs suggest that these molecules may utilize different molecular mechanisms to 

induce the TRAIL gene. TIC9 but not TIC10 induced cell death of normal fibroblasts, suggesting 

that TIC10 may have a more favorable therapeutic index than TIC9. Thus, TIC10 was chosen as 

a lead TIC for further study based on its ability to induce TRAIL on the surface of tumors cells and 

its ability to potentiate significant levels of cancer-specific cell death.  

 In accordance with the design of the luciferase reporter screen, TIC10 induced TRAIL 

gene transcription in cells that lack p53. This is an important setting given the high frequency of 

p53 inactivation in human cancer by mutation or gene deletion, which often causes resistance to 

chemotherapy (Bunz et al., 1999). Another favorable observation for TIC10 as a therapeutic is its 

ability to induce TRAIL in cells that are p53-mutant (SW480) or -null (e.g. HCT116 p53-/-), EGFR-

null (SW620 cells), Her-2-null (MDA-MB-231 cells), cells that have mutant KRAS (e.g. SW480), or 

other oncogenic genetic aberrations. The ability of TIC10 to induce TRAIL in a sustained manner 

has important implications for its in vivo activity. Our data suggests that TRAIL can continue to be 

produced even after TIC10 is eliminated from the tumor environment.   
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CHAPTER 3 

TIC10-INDUCED CYTOTOXICITY AND TRAIL-DEPENDENCY IN VITRO AND IN VIVO
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3.1  Abstract  

We tested the efficacy of TIC10 in vitro and in vivo to determine its utility as an antitumor agent. 

TIC10 induces a dose-dependent decrease in the cell viability of HCT116 cells and decreases the 

clonogenic survival of several different human cancer cell lines. Furthermore, TIC10 induced cell 

death in a p53-independent and Bax-dependent manner, as does rhTRAIL. The spectrum of 

activity for TIC10 is very broad and does not correlate with that of recombinant TRAIL, possibly 

due to the mechanism of TIC10. TIC10 induced Sub-G1 content, elevated levels of active 

caspase-3, and induced cell death that was inhibited by the pan-caspase inhibitor zVAD-fmk, 

which was suggestive of apoptosis. We then tested the contribution of TRAIL to the activity of 

TIC10 and found that suppression of TRAIL by shRNA, antibody-mediated sequestration, or 

overexpression of an inactivated death receptor (DR5) construct was sufficient to significantly 

inhibit TIC10-induced cell death. TIC10 caused potent antitumor effects in vivo even when given 

as a single dose as a monoagent, was orally active, and increased TRAIL protein and markers of 

TRAIL-mediated apoptosis in tumors. Stable knockdown of TRAIL inhibited the ability of TIC10 to 

induce the regression of tumor xenografts as well as TRAIL and markers of TRAIL-mediated 

apoptosis in tumors. In addition to demonstrating efficacy in several subcutaneous xenografts, we 

also found that TIC10 prolongs the survival of transgenic Eµ-myc mice that spontaneously 

develop lymphomas and mice harboring intracranial human glioblastoma xenografts.  

 

3.2  Introduction 

TRAIL has received considerable attention, primarily due to its apoptosis-inducing capability 

demonstrated in several human cancer cell lines (Walczak et al., 1997). The rapid apoptotic 

activity of rhTRAIL has been demonstrated in numerous solid and hematological malignant cell 

lines as a monotherapy (Ashkenazi et al., 1999b; Gazitt, 1999; Kelley et al., 2001; Marini et al., 

2005; Pollack et al., 2001) and in combination with chemotherapy and radiotherapy (Chinnaiyan 

et al., 2000; Gliniak and Le, 1999; Keane et al., 1999a; Keane et al., 1999b; Mizutani et al., 1999; 

Nimmanapalli et al., 2001).  
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 TRAIL initiates apoptotic signaling through the pro-apoptotic death receptor 4 (DR4; 

TRAIL-R1) (Pan et al., 1997c) and death receptor 5 (DR5; TRAIL-R2) (Pan et al., 1997b; Wu et 

al., 1997) at the cell surface through engagement of the extrinsic or intrinsic apoptotic pathways 

(Ashkenazi, 2002).  Following ligand binding, the proapoptotic receptor death domains recruit 

Fas-associated death domain (FADD) and procaspase-8 to form the death inducing signaling 

complex (DISC). At the DISC, procaspase-8 is activated by autocatalytic cleavage to form 

caspase-8, which can cleave effector caspases-3, -6, and -7 to induce apoptosis by the intrinsic 

death pathway in type I cells. In type II cells, caspase-8 cleaves Bid to form tBid, which then 

interacts with Bax and Bak at the mitochondrial membrane to promote cytochrome c release (Li et 

al., 1998; Luo et al., 1998). Once released, cytochrome c binds to apoptotic peptidase activating 

factor 1 (Apaf-1) and caspase -9 to form the apoptosome, which initiates the caspase cascade.  

Various forms of rhTRAIL have been engineered, including His tag (Pitti et al., 1996), 

Flag tag (Pascal, 2000), leucine zipper (Ganten et al., 2006; Walczak et al., 1999a), or isoleucine 

zipper versions of TRAIL. It has been reported that the leucine or isoleucine zipper rhTRAIL are 

effective and do not kill hepatocytes (Ganten et al., 2006). Several limitations of TRAIL as a 

therapeutic have been recognized and resulted in novel approaches to target the TRAIL pathway 

for the treatment of human cancer.  

 Recapitulating the efficacy of the natural ligand as a recombinant protein and enhancing its 

stability have been addressed by numerous studies describing the development of antibodies, 

peptide mimetics, and mutant versions of TRAIL (Abdulghani and El-Deiry, 2010; Bremer and 

Helfrich, 2010; van der Sloot et al., 2004; van der Sloot et al., 2006). The poor delivery of TRAIL, 

particularly to the brain, clearly limits its use in brain malignancies such as glioblastoma, which is 

an extremely lethal malignancy without any attractive therapy options. Recent efforts in the field 

aimed at overcoming limited biodelivery have utilized adenoviral expression of TRAIL on the 

surface of mesenchymal stem cells as a delivery vehicle, though its clinical feasibility is unclear. 

In conclusion, TRAIL is a potent cancer cell-specific inducer of apoptosis that has demonstrated 

some efficacy in clinical trials as a recombinant protein but may be therapeutically hindered by 

several molecular and practical limitations that include stability, half-life, biodistribution, expense, 
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and administration route. We therefore tested the ability of TIC10 to serve as an antitumor agent 

and to overcome efficacy-limiting properties of recombinant TRAIL that include poor thermal 

stability and the inability to cross the intact blood-brain barrier and treat brain tumors.  

 

3.3 Materials and Methods 

Reagents 

zVAD-fmk (Promega) was used at a working concentration of 20 µM and was preincubated with 

cells for 15 minutes prior to addition of drug. The TRAIL-sequestering (RIK-2) antibody was used 

at a working concentration of 10 µg/mL (Santa Cruz).  

 

Cell viability assay 

Cells were plated into 96-well clear bottom, black-walled plates at 5,000 cells per well and 

allowed to adhere for 12 hours. Media was replaced the next day with complete containing the 

reagents as indicated at a volume of 100 µL per well. Cell viability was evaluated using the Cell 

TiterGlo (Promega) according to the manufacturer’s protocol and analyzed using the IVIS imaging 

system (Xenogen). Dose-response curves were generated and IC50 values were calculated by a 

linear regression fit of the two treatment conditions flanking 50% viability. 

 

Clonogenic assays 

The indicated cell lines were plated at 500 cells per well and treated the following day after 

adherence as indicated. At 3 days post-treatment, the media was replaced with drug-free media 

and propagated for 10 days with fresh media given every 3 days. Cells were then washed in PBS, 

fixed and stained with Coomassie blue, rinsed, and air-dried for quantification. 

 

Immunofluorescence by microscopy 

Cells were grown in chambered slides and treated as indicated. At endpoint, cells were rinsed in 

PBS and incubated with CytoFix/CytoPerm (BD Laboratories) for 20 minutes and washed in 

CytoPerm/CytoWash. Primary antibodies were incubated overnight at 4°C or for 3 hours at room 
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temperature. The cleaved caspase-3 antibody was incubated at 1:200 (9664S, Cell Signaling). 

Cells were then rinsed twice and the appropriate secondary antibody was added at 1:250 for 1 

hour at room temperature while protected from light. Cells were rinsed twice and mounted with a 

coverslip in fluorescent mounting media.  

 

Western blot analysis 

Western blot analysis was conducted as previously described (Wang et al., 2006) using NuPAGE 

4–12% Bis-Tris and visualized using Supersignal West Femto (Thermo Scientific) and X-ray film. 

For all lysis buffers, fresh protease inhibitor (Roche) and 1 mM sodium orthovanadate was added 

immediately prior to use.  

 

Retroviral infection 

Phoenix-ampho cells or HEK293T (lentiviral) cells were seeded into a well of a 6 well plate at 

~25% confluency and allowed to adhere for 24 hours. Cells were then transfected with 4μg of 

the indicated plasmid using Lipofectamine 2000 by the manufacturer’s protocol. Cells were then 

allowed to propagate in complete media for 48 hours. The supernatant was then harvested and 

centrifuged to clear cells. The cells to be infected were then trypsinized from log phase growth 

and placed into a well of a six well plate at ~40% confluency. 0.5mL of the phoenix-ampho 

supernatant and polybrene (20 μg/mL) was then added to the cell suspension. The well plate 

was then centrifuged at 1800 RPM for 2 hours. The media was then replaced by compete media 

and cells were allowed to propagate for 24 hours prior to selection with the appropriate. G418 

selected was started at 40 μg/mL and puromycin selection was started at 0.5 ug/mL. A parallel 

“mock” infection with PBS was carried out as a positive control for selection.  TRAIL shRNA was 

Mission shRNA (Sigma, SHGLY) and the vector was pLKO.1-pure (SHC002). For lentiviral 

infection, pCMV-dR8.2dvpr (plasmid #8455), and pCMV-VSVG were cotransfected with the 

indicated plasmid.  
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Subcutaneous xenografts in athymic nude mice 

All animal experiments were conducted in accordance with the Institutional Animal Care and Use 

Committee (IACUC). For subcutaneous xenografts, 4-6 week old female, athymic nu/nu mice 

(Charles River Laboratories) were inoculated with 1X106 cells (2.5X106 for T98G) of indicated cell 

lines in each rear flank as a 200 µL suspension of 1:1 Matrigel (BD):PBS. All intraperitoneal and 

intravenous injections were given at a total volume of 200 µL. Oral formulations of TIC10 were 

administered using an oral gavage and given as a 200 µL suspension containing 20% Cremophor 

EL (Sigma), 10% DMSO, and 70% PBS. Tumors were monitored using digital calipers at 

indicated time points. All subcutaneous tumors were allowed to establish for 1-4 weeks post-

injection until reaching a volume of ~125 mm3 before treatment initiation. Relief of tumor burden 

was monitored for 3 weeks following disappearance of the tumor and confirmed by necropsy after 

euthanasia. Bioluminescent imaging of tumors was carried out on an IVIS imaging system as 

previously described (Wang and El-Deiry, 2003). Near-infrared imaging of mice was carried out 

on the Pearl Impulse imaging system (LI-COR) following tail-vein injection of Angiosense 680 

(VisEn Medical, Woburn, MA) according to the manufacturer’s protocols. 6-week-old Eµ-myc 

mice were obtained from The Jackson Laboratory (B6.Cg-Tg(IghMyc)22Bri/J). 

 

Immunohistochemistry and histology  

Tissues were harvested and immediately fixed in 4% paraformaldehyde in PBS in microcentrifuge 

tubes for 48 hours at 4°C. Samples were then transferred to tissues cassettes in 70% ethanol 

and submitted to the Penn State Hershey Medical Center Tissue & Histology core facility for 

paraffin embedding and sectioning. Slides were dewaxed by an ethanol gradient (2 X 3’ each of 

xylene, 95, 90, 80, and 70% ethanol. Slides were then immersed in 10 mM citric acid buffer (pH 

6.0) and boiled for 6 minutes in the microwave. Slides were cooled in the solution for 15 minutes 

and rinsed in running water for 5 minutes. Tissues were circumscribed using a hydrophobic pen 

and blocked using FBS. The primary antibody was diluted in PBT (10% BSA, 10X Triton, in PBS) 

and incubated overnight at 4°C in a humidity chamber. The next day the samples were rinsed 

twice with PBS and incubated with the appropriate secondary antibody (Impress, Vector Lab). 
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Signal was developed using DAB (Vector Labs) deposition for 2-5 minutes and monitored by light 

microscopy. The slides were washes in dH2O for 10 minutes, counterstained with hematoxylin 

(Daiko) for 5 minutes, rinsed PBS, rinsed in dH2O, dehydrated with the reverse ethanol/xylene 

gradient, and mounted with a xylene-based medium and coverslip. For immunohistochemistry the 

following antibodies for used: cleaved caspase-8 (9496L, Cell Signaling), TRAIL (ab2435, 

Abcam). TUNEL staining was performed with the ApopTag Peroxidase In Situ Apoptosis 

Detection Kit (S7100, Millipore).  

 

Primary glioblastoma tissue 

All primary specimens were obtained in accordance with the Institutional Review Board at Penn 

State Hershey Medical Center using approved protocols. Samples were received immediately 

following resection, manually digested in complete DMEM with a scalpel and vortexing, filtered 

with a 100-µm nylon mesh, and plated at 2X105 cells/mL in complete DMEM.  

 

Intracranial xenografts  

6-8 week old anesthetized athymic female nude mice were implanted with 2X105 SF767 cells in a 

25 µL suspension of serum- and antibiotic-free RPMI. The site of injection was a burr hole 

created 1mm lateral to the midline of the skull and 1mm anterior to the coronal suture to avoid 

ventricular deposition. The injection was administered over 5 minutes with a Hamilton syringe and 

the burr hole was sealed using bone wax. Tumor take was assessed by bioluminescent imaging 2 

weeks following implantation. Bioluminescent imaging of tumors was carried out on an IVIS 

imaging system as previously described (Wang and El-Deiry, 2003). Near-infrared imaging of 

mice was carried out on a Pearl Impulse imaging system (LI-COR).  

 

Statistical Analyses. For pair-wise comparisons, we analyzed data by the Student’s two-tailed t 

test using Excel (Microsoft). Log-rank statistical analysis was performed using a web-based script 

that interfaces with the statistical package R (http://bioinf.wehi.edu.au/software/russell/logrank/). 
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3.4 Results 

TIC10 has stable antiproliferative activity against cancer cells in vitro 

With the observation that TIC10 induces TRAIL gene transcription in a manner that upregulates 

TRAIL on the surface of tumors cells in a temporally sustained manner, we next determined the 

activity profile of TIC10 in vitro. We found that TIC10 caused a dose-dependent decrease in the 

cell viability of HCT116 cells (Figure 3.1A). Furthermore, TIC10 decreased the clonogenic 

survival of DLD-1, SW480, and HCT116 human colon carcinoma cell lines (Figure 3.1B). We then 

determined if TIC10 could induce Sub-G1 DNA content, which can occur during apoptosis due to 

DNA fragmentation. TIC10 induced Sub-G1 content in the TRAIL-sensitive HCT116 cells at 5-10 

µM doses in a p53-independent and Bax-dependent manner, as we previously reported for 

TRAIL-mediated apoptosis (Burns and El-Deiry, 2001) (Figure 3.1C).  

One of the objectives of identifying TICs was to overcome limitations of rhTRAIL. We 

therefore compared the thermal stability of TIC10 and TRAIL using cell viability assays following a 

short-term incubation of a range of temperatures. We found that rhTRAIL rapidly loses activity 

following a 1 hour incubation at temperatures >40°C. This lack of thermal stability has been 

previously reported and was ascribed to protein denaturation (van der Sloot et al., 2004).  In 

contrast, TIC10 maintained its activity at all tested incubation temperatures that reached as high 

as 100°C. This provides direct evidence of a superior drug property of TIC10 compared to 

rhTRAIL and bodes well for the stability of TIC10.   
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Figure 3.1. TIC10 has p53-independent anticancer activity in vitro. (A) Dose response of 

HCT116 cells to TIC10 treatment in cell viability assay (72 hr). Quantification shown in right panel 

(n=3). (B) Exemplary wells (left panel) and quantification (right panel) of colony formation assays 

of cancer cells treated with TIC10 (10 µM) for 72 hr followed by a 10 day proliferation period 

(n=3). (C) Sub-G1 analysis of HCT116 WT, p53-/-, and Bax-/- cells following treatment with DMSO, 

TIC10 (1, 5, or 10 µM), or rhTRAIL (25 ng/mL) for 72 hr (n=3). (D) Ability of TIC10 or rhTRAIL to 

reduce cell viability in HCT116 cells following a 1 hr incubation at the indicated temperatures 

(n=3). Error bars indicate standard deviation (s.d.) of replicates.  
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TIC10 exhibits a broad-spectrum activity profile 

As TIC10 is part of a library of NCI compounds, the growth inhibitory-50 (GI50) concentrations 

have been calculated for the molecule across the NCI panel of cancer cell lines. Mining this data 

revealed that TIC10 has broad-spectrum activity against all tested malignancies, which includes 

renal, prostate, ovarian, non small-cell lung cancer (NSCLC), melanoma, leukemia, colon, central 

nervous system (CNS), and breast cancers (Figure 3.2). The vast majority of these cancer cell 

lines possess a GI50 in the lower micromolar range, though there are a few that appear resistant 

as judged by a GI50 of >50 µM: RXF393, IGROV-1, KM12, and SF539. These cell line are of 

various tissues of origin and do not contain common oncogenic genetic alterations that have been 

previously reported (Ikediobi et al., 2006). The GI50 values reported by the NCI were in close 

agreement with IC50 values that we calculated for several cancer cell lines (Figure 3.3A). The 

broad-spectrum activity of TIC10 is attractive as a cancer therapeutic and is much more broad 

that that of rhTRAIL. Interestingly, the sensitivity of cancer cell lines to TIC10 does not correlate 

with sensitivity to rhTRAIL (Figure 3.3B). This suggests that the activity of TIC10 may involve 

changes that include but are not limited to TRAIL. This is not surprising given that the mechanism 

of TRAIL induction is transcriptional as demonstrated by RT-PCR data and therefore is highly 

likely to cause transcriptional changes in other genes. Furthermore, small molecules virtually 

always have pleiotropic effects that may or may not contribute to their activity and must be 

considered.   
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Figure 3.2. TIC10 exhibits broad-spectrum across the NCI60 in vitro. GI50 for TIC10 data 

from NCI database across the NCI60 panel of human cancer cell lines.  
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Figure 3.3 Activity profile of TIC10 and rhTRAIL. (A) IC50 for TIC10 in several human cancer 

cell lines extrapolated from cell viability assays conducted 72 hr post-treatment (n=2). (B) Lack of 

correlation between TIC10 and rhTRAIL sensitivity by IC50 values, IC50s for rhTRAIL determined 

as in (A) (n=2). Cell lines with a rhTRAIL IC50 greater than 500 ng/mL were not able to be 

accurately calculated and are displayed along the gray vertical line. Error bars indicate s.d. of 

replicates.  
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TIC10 causes TRAIL-mediated apoptosis  

We next tested if the small molecule TIC10 induces apoptosis in cancer cells. We found that 

TIC10 treatment caused a large increase in the amount of Sub-G1 content in the cell cycle profile 

of HCT116 p53-/- cells (Figure 3.4A). TIC10 also increased protein levels of cleaved caspase-3, 

the active form of the effector caspase that is intimately involved in apoptosis, by Western blot 

analysis and immunofluorescence (Figure 3.4B). In accordance with apoptotic cell death, Sub-G1 

content induced by TIC10 was significantly inhibited by co-incubation with zVAD-fmk in several 

cancer cell lines (Figure 3.4C). zVAD-fmk is a pan-caspase apoptosis inhibitor that functions by 

binding to the active site in caspases that carry out proteolysis by mimicking its substrate.  

 With the observations that TIC10 induces significant levels of TRAIL on the cell surface 

as well as apoptosis, we next tested whether TRAIL mediates apoptosis induced by TIC10 using 

a multitude of approaches. The first approach was to create a stable knockdown of TRAIL using 

short hairpin (shRNA) delivered by infection with lentiviral particles. TIC10-induced apoptosis was 

completely inhibited by shRNA-mediated stable knockdown of TRAIL (Figure 3.5A). Additional 

evidence for the requirement of TRAIL in TIC10-dependent tumor cell death was observed 

following abrogation of DR5 signaling (Figure 3.5B). We accomplished this by overexpressing a 

DR5 construct with its death-domain replaced by EGFP . The death domain is the region of the 

receptor that modulates proapoptotic TRAIL signaling by initiating the formation of the DISC, 

which activates caspase-8. Additionally, we inhibited TIC10-induced cell death with experimental 

sequestration of TRAIL by use of a blocking antibody (RIK-2) that has been previously 

characterized in the literature (Figure 3.5C) (Kayagaki et al., 1999). Taken together, these data 

demonstrate that TRAIL and TRAIL signaling plays a critical role in TIC10-mediated apoptosis. 
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Figure 3.4. TIC10 induces caspase-mediated apoptosis. (A) Cell cycle profiles of HCT116 

p53-/- cells treated with TIC10 (5 µM, 72 hr, n=3). (B) Active caspase-3 in HCT116 p53-/- cells 

assayed by immunofluorescence (top panel, 5 µM TIC10) or Western blot analysis (bottom panel) 

treated with TIC10 (0, 2.5, 5, 10 µM) for 72 hr. (C) Sub-G1 analysis of TIC10-treated cancer cells 

pre-incubated with or without zVAD-fmk  (10 µM, 72 hr, n=3). Error bars indicate s.d. of 

replicates. *P < 0.05 between the indicated condition and controls unless indicated otherwise. 
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Figure 3.5. TIC10 induces TRAIL-mediated cell death in vitro. (A) Sub-G1 analysis of MDA-

MB-231 cells with stable knockdown of TRAIL by short hairpin RNA (72 hr, n=3) (left panel). 

Verification of MDA-MB-231 shTRAIL knockdown by flow cytometry analysis of TIC10-treated 

cells (5 µM, 72 hr, n=3) (right panel). (B) Sub-G1 analysis of TIC10-induced cell death in H460 

cells with endogenous DR5 or overexpression of a DR5 construct with its death domain replaced 

by EGFP (10 µM, 72 hr, n=3). (C) Sub-G1 analysis of HCT116 cells treated with DMSO, rhTRAIL 

(25 ng/mL), or TIC10 (10 µM) in the presence or absence of a TRAIL-sequestering antibody, RIK-

2 (72 hr, n=3). Error bars indicate s.d. of replicates. *P < 0.05 between indicated condition and 

control unless otherwise indicated. 
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TIC10 is a potent antitumor agent in subcutaneous xenografts  

We next tested the efficacy of TIC10 in several subcutaneous xenografts of several human 

cancer cell lines in athymic, nude mice. We found that TIC10 caused tumor regression in the 

HCT116 p53-/- xenograft to a comparable extent to that observed with TRAIL when both were 

administered as multiple doses (Figure 3.6A). Single intraperitoneal doses of TIC10 in HCT116 

WT human colon cancer xenograft-bearing mice also exhibited a sustained response as 

monitored with bioluminescent imaging (Figure 3.6B). Single dose experiments comparing 

rhTRAIL and TIC10 in the RKO xenograft corroborated the potent anti-tumor activity of TIC10 and 

demonstrated clearly superior efficacy compared to rhTRAIL in this xenograft (Figure 3.6C). 

These effects were grossly apparent by measurements of tumor volume as well as near-infrared 

imaging of the tumors (Figure 3.6D). 

One of the limitations of rhTRAIL is the requirement of intravenous administration, which 

is a practical barrier for patients that can limit therapeutic administration in the clinical setting. We 

therefore tested the activity of TIC10 upon oral administration. TIC10 caused a sustained 

regression of the SW480 xenograft as a single dose by intraperitoneal or oral delivery with a 

magnitude that was independent of delivery route. This result suggests that TIC10 has favorable 

bioavailability and/or that the dose of TIC10 administered (100 mg/kg) exceeds a threshold of 

efficacy saturation (Figure 3.6E). We next found that the formulation of TIC10 in 20% Cremophor 

EL and 80% PBS was a suitable solvent for oral administration by gavage to mice and that TIC10 

was soluble in this mixture (data not shown). Titration of a single dose of orally administered 

TIC10 in the HCT116 xenograft model revealed sustained anti-tumor efficacy that plateaued at 25 

mg/kg (Figure 3.6F). Based on these observations, TIC10 was given orally at 25 mg/kg for the 

subsequent in vivo experiments.  
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Figure 3.6. TIC10 exerts potent antitumor effects in subcutaneous xenografts of human 

cancer cell lines. (A) HCT116 p53-/- xenograft treated with 3 doses of TIC10 (i.p.), TRAIL (i.v.), 

or vehicle (i.p.) administered on day 0, 3, and 6 as indicated by gray vertical bars (n=10). (B) 

Bioluminescent imaging of luciferase-infected HCT116 p53-/- xenografts that received a single i.p. 

injection of TIC10 or vehicle (n=6). (C) RKO xenograft with a single dose of TIC10 (i.p.), TRAIL 

(i.v.), or vehicle (i.p., n=10). (D) Exemplary mice from RKO cohorts on day 13 post-treatment and 

3-days post-injection with Angiosense 680. (E) Relative tumor volume of SW480 xenografts 

treated with TRAIL (i.v.), TIC10 (i.p.), or DMSO (i.p.) as a single dose at day 0 at 30 mg/kg (n=8). 

(F) Titration of TIC10 administered as a single oral dose in the HCT116 xenograft indicated 

concentrations (n=6). For all animal experiments, day 0 is defined as the day of treatment 

initiation. Error bars indicate s.d. among the cohort.  
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TIC10 induces TRAIL and hallmarks of TRAIL-mediated apoptosis in tumors  

TIC10 clearly causes potent antitumor effects in vivo. We next assayed TIC10-treated tumors 

from the HCT116 p53-/- xenograft for evidence that TIC10 induces TRAIL and markers of TRAIL-

mediated apoptosis as it does in vitro. Histological analysis using H&E staining revealed an 

obvious increase in fragmented nuclei in TIC10-treated tumors, which is a consequence of 

apoptosis-mediated DNA fragmentation. Immunohistochemical (IHC) analysis of TIC10-treated 

tumors revealed increased protein levels of TRAIL and cleaved caspase-8, which is the initiator 

caspase involved in triggering TRAIL-mediated apoptosis upon receptor-ligand binding (Figure 

3.7). Also in support of apoptosis, there was a striking increase in the amount of TUNEL (TdT-

mediated dUTP Nick-End Labeling) staining that labels DNA double stranded breaks that result 

from apoptosis. Interestingly, TRAIL induction was high 2 days following TIC10 treatment though 

it was still slightly elevated at 1 week post-treatment and other markers of TRAIL-mediated 

apoptosis were also persistent at this time point. This evidence suggests that TIC10 induces 

TRAIL and TRAIL-mediated apoptosis in tumor xenografts in a temporally sustained manner.  
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Figure 3.7. TIC10 induces TRAIL and TRAIL-mediated cell death in tumors. Histological and 

immunohistochemical analysis of HCT116 p53-/- tumors following a single dose of TIC10 (100 

mg/kg, i.p.) on day 0. 

 

 

TRAIL is required for the activity of TIC10  

We then tested the requirement of TRAIL for TIC10 antitumor activity in vivo by shRNA-mediated 

stable TRAIL knockdown cells. A single dose of TIC10 induced regression of MDA-MB-231 

human triple-negative breast cancer xenografts that was significantly inhibited by knockdown of 

TRAIL whereas TRAIL-treated tumors progressed in terms of tumor volume (Figure 3.8A). 

Additionally, the stable knockdown of TRAIL ablated the apoptosis induced in tumors as judged 

by TUNEL staining (Figure 3.8B), which labels free nucleotides at the end of double stranded 

DNA breaks that occur during apoptosis. This directly demonstrates that the anti-tumor activity of 

TIC10 is superior to that of TRAIL when administered as single doses in this xenograft and this 

activity is mediated at least in part by TRAIL produced by tumor cells.  
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Figure 3.8. The antitumor effects of TIC10 are mediated by TRAIL. (A) Box and whisker plot 

of tumor volume on day 9 following treatment initiation in MDA-MB-231 vector or shTRAIL 

xenografts with single doses of TIC10 (i.p.), rhTRAIL (i.v.), or vehicle (DMSO, i.p.) (n=8). (B) 

TUNEL staining of tumors from the MDA-MB-231 vector and shTRAIL xenografts 2 days post-

treatment. Error bars indicate s.d. among the cohort. *P < 0.05 between indicated condition and 

control unless otherwise indicated. 
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TIC10 prolongs the survival of transgenic mice with spontaneous lymphoma 

Testing the efficacy of novel therapies in mouse models is considered essential in the translation 

process for cancer therapeutics, though specific models have pros and cons. For instance, 

subcutaneous xenografts of human cancer cell lines require immunocompromised mice to 

prevent immune rejection of the transplanted cells. This means that this model does not account 

for the immune system, which can be affected or even utilized by therapies. Transgenic mice 

offer an alternative model that allows for a wild-type immune system by introducing oncogenic 

alterations in the mouse genome to allow for spontaneous or inducible cancer. The disadvantage 

of transgenic mice as a model is that the cancer cells are of mouse origin, which means that they 

may respond differently to therapeutics due to differences in genetics. To test the efficacy of 

TIC10 in an immuno-competent preclinical cancer model, we utilized Eµ-Myc transgenic mice that 

spontaneously develop lymphoma. We treated these mice with oral TIC10 (25 mg/kg) or vehicle 

once a week from weeks 9-12 of age, which is when these mice develop lymphoma. TIC10 

significantly prolonged the survival of these mice by 4 weeks (Figure 3.9). It should be noted that 

these mice are incurable due to their oncogenic transgene and that treatment was terminated at 

week 12 due to experimental design, though no signs of toxicity were evident.  
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Figure 3.9. TIC10 prolongs the survival of transgenic mice with spontaneous lymphoma. 

(A) 14-week old Eµ-myc mouse with swollen axillary and inguinal lymph nodes. (B) H&E staining 

of Eµ-myc and WT C57/B6 axillary lymph nodes. (C) Overall survival of Eµ-myc treated during 

weeks 9-12 with TIC10 (PO, qwk). P=.00789 determined by log-rank test. 
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Clinical trials with novel cancer therapeutics with efficacy as an endpoint often involve the 

addition of the investigational drug to the standard-of-care treatment. It’s therefore useful to 

identify approved therapeutics that synergize with the investigational agent to aid in future clinical 

trial design. We searched for synergistic combinations of TIC10 with approved chemotherapeutic 

agents using cell viability assays in HCT116 and HT29 human colon carcinoma cell lines (Figure 

3.10). For these assays, we selected doses based on IC12.5, IC25, and IC50.values reported in the 

literature, though disparities exist because of fundamental differences between assays and other 

experimental conditions.  

Among the tested chemotherapies, we observed in vitro synergy between TIC10 and the 

taxanes paclitaxel and docetaxel. This synergy was subsequently confirmed in the SW620 

metastatic human colon carcinoma cell line and the H460 NSCLC cell line (Figure 3.11). Taxanes 

are cancer therapeutics that inhibits mitosis by inhibiting the function of microtubules through 

targeting GDP-bound tubulin. Paclitaxel is approved by the FDA in the treatment of AIDS-related 

Kaposi sarcoma, breast cancer, NSCLC, and ovarian cancer. Docetaxel is approved for the 

treatment of breast cancer, advanced gastric cancer, NSCLC, prostate cancer, and squamous 

cell carcinoma of the head and neck.  

We then tested the combination of TIC10 with paclitaxel or docetaxel as single doses in a 

subcutaneous xenograft of H460 NSCLC cells. Both TIC10 and the taxanes alone had a potent 

effect on the tumor growth, which limited the ability to conclude about the degree of cooperativity 

with the combination (Figure 3.12A-B). Nevertheless, the combination of TIC10 and either of 

these taxanes cooperated to yield several sustained cures in the H460 non-small cell lung cancer 

xenograft, unlike the monoagents (Figure 3.12C-D).  
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Figure 3.10. Combination of TIC10 with approved cancel therapeutics. Cell viability assays of 

HCT116 and HT-29 cell lines treated with the indicated drug at IC12.5, IC25, and IC50 doses 

reported in the literature (72 hr, n=3). 5-FU: 5-fluorouracil; TMZ: temozolomide.  
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Figure 3.11. TIC10 synergizes with taxanes in vitro. Cell viability of  (A) DLD-1 and (B) SW620 

cells treated with TIC10 in combination with paclitaxel in at indicated conditions (72 hr, n=3). Cell 

viability of (C) DLD-1 and (D) SW620 cells treated with TIC10 in combination with taxotere in at 

indicated conditions (72 hr, n=3). Error bars indicate s.d. of replicates.  
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Figure 3.12. TIC10 cooperates with taxanes in vivo. (A) Relative tumor volume of H460 

xenograft treated with TIC10 (30 mg/kg, i.p.) or taxotere (20 mg/kg, i.v.) alone, in combination, or 

with vehicle (DMSO, i.p.) (n=8). (B) Relative tumor volume of H460 xenograft treated with TIC10 

(30 mg/kg, i.p.) or paclitaxel (20 mg/kg, i.v.) alone, in combination, or with vehicle (DMSO, i.p.) 

(n=8) as single doses. (C) and (D) are the tumor burden curves for the cohorts described in (A) 

and (B), respectively. Error bars indicate s.d. among the cohort.  
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TIC10 is effective against glioblastoma 

The inability of rhTRAIL to cross the blood-brain barrier greatly limits its utility in cancers involving 

the central nervous system. Unlike the large proteins, many lipophilic small molecules are able to 

permeate the blood-brain barrier. We explored the possibility that TIC10 may serve as an anti-

tumor agent against brain tumors. We selected glioblastoma multiforme (GBM) as it is the most 

common and most aggressive of the brain tumors. We first tested the activity of TIC10 in GBM 

cell lines and found that TIC10 induced TRAIL (Figure 3.13A) and had a p53-independent GI50 in 

the low micromolar range that is comparable with the GI50 values observed for TIC10 in other 

cancer cell lines (Figure 3.2). Importantly, this panel of GBM cell lines includes cells that are 

resistant to temozolomide such as T98G (Figure 3.13B) (Kanzawa et al., 2003).  

In addition to cell lines, we also tested the cytotoxicity of TIC10 on freshly resected brain 

tumor cells from a 38 year-old female patient with grade IV glioblastoma with an oligodendroglial 

component that was previously resected and irradiated. TIC10 exerted a strong cytotoxic effect 

against these cells even at the lowest tested dose of 1.25 µM as opposed to temozolomide, 

which had no significant effect under these conditions (Figure 3.13C). We then tested TIC10 in 

GBM in vivo as a monoagent and in combination with bevacizumab, the antiangiogenic 

monoclonal antibody that targets VEGF and is approved for the treatment of recurrent gliomas. In 

vitro testing involving bevacizumab is not readily possible, as angiogenesis is not represented in 

vitro. TIC10 induced a sustained regression of subcutaneous temozolomide-resistant T98G 

xenografts to an extent similar to a clinical dose of bevacizumab when given as a single oral dose 

(Figure 3.13D).  
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Figure 3.13. TIC10 is an effective antitumor agent against human glioblastoma. (A) Surface 

TRAIL in GBM cell lines following incubation with TIC10 (5 µM, 72 hr, n=3). (B) GI50 values 

extrapolated from cell viability assays of indicated GBM cell lines at 72 hr post-treatment with 

TIC10 or DMSO (n=3). (C) Cell viability assay of freshly resected glioblastoma tissue treated with 

DMSO, TIC10, or temozolomide (TMZ, 10 µM) (72 hr, n=3). Tissue was a grade IV 

glioblastoma with oligodendroglial component taken from a 38 year-old female patient 

that had undergone prior cytoreductive surgery and radiation.  (D) Subcutaneous xenograft of 

T98G with mice receiving a single dose of vehicle, TIC10 (30 mg/kg, PO), or bevacizumab (10 

mg/kg, i.v.) on day 0 (n=8). Error bars indicate s.d. of replicates. *P < 0.05 between indicated 

condition and control. 
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TIC10 prolongs the survival of mice harboring intracranial human GBM  

Based on the potent activity of TIC10 in GBM including cells that are resistant to temozolomide, 

we tested the impact of TIC10 on the overall survival of  mice with brain tumors. For this model, 

we utilized SF767 human GBM cells that we labeled with luciferase and EGFP to allow for in vivo 

imaging. Imaging is necessary for this model as the tumor grows inside on the skull and therefore 

does not allow for tumor volume measurements. We performed orthotopic implantation of these 

cells and evaluated successful tumor taken by verifying placement with pericranial imaging 

(Figure 3.12A) and tumor growth using quantitative bioluminescent imaging. Following verification 

of a viable and growing tumor, mice were randomized into 4 treatment cohorts that received 

single doses of vehicle, oral TIC10 (25mg/kg), bevacizumab (10mg/kg  i.v.), or concomitant 

TIC10 and bevacizumab. Treatment was initiated 2 weeks following intracranial implantation of 

the tumor cells. TIC10 as a monoagent had strong effects in this model both in terms of tumor 

regression and survival (Figure 3.12B-C, Table 3.1) We found that a single dose of TIC10 

significantly doubled the overall survival of mice as a monoagent this aggressive intracranial 

xenograft of human GBM using the SF767 cell line. Furthermore, TIC10 cooperated with 

bevacizumab to triple the duration of survival of such brain tumor-bearing mice.  
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Figure 3.14. A single dose of TIC10 prolongs the survival of mice with intracranial human 

brain tumors. (A) Confirmation of GFP-labeled SF767 GBM intracranial implantation 1-week 

post-implantation using spectral unmixing. (B) Bioluminescent imaging of an exemplary control 

mouse and a TIC10-treated mouse showing a response. The luminescent scale bar on the right 

applies to all images in the panel. (C) Overall survival of mice harboring SF767 intracranial 

tumors treated with a single oral dose of vehicle (n=8), TIC10 (25 mg/kg, n=7), bevacizumab (10 

mg/kg, i.v., n=6), or TIC10 and bevacizumab (n=7) at 2 weeks post-implantation.  
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Cohort n 
Median Survival 

(days) 

ΔMedian 

Survival (days) 
P 

Control 8 28 - - 

TIC10 7 74 46 0.038 

bev 6 70 42 0.119 

TIC10 + bev 7 96.5 68.5 0.0308 

Table 3.1. Change in overall survival of mouse treatment cohorts with SF767 intracranial 

tumors.  Change in overall survival of mice from experiment in Figure 3.14.  

 

3.5  Discussion  

TIC10 exhibited broad activity amongst cancer cell lines with no obvious trend in resistant cell 

lines in terms of tumor type or common genetic aberrations. The cancer cell lines IGROV-1 

(ovarian), SK-MEL-28 (melanoma), KM12 (colon), and SF539 (CNS) are relatively resistant to 

TIC10 and should be examined in future studies of resistance mechanisms. The activity of TIC10 

appears cytotoxic as it reduces cell viability in a dose-dependent manner, ablates clonogenic 

survival, and causes caspase-mediated apoptosis. The cell death induced by TIC10 is p53-

independent, which is in agreement with the previous observation that TIC10 induces TRAIL by a 

p53-independent mechanism. TIC10 fully maintains its cytotoxic potential at temperatures up to 

and perhaps beyond 100°C, which is in sharp contrast to the rapid loss of activity of recombinant 

TRAIL at higher temperatures as previously reported (van der Sloot et al., 2004). This results is 

encouraging given that the thermal stability of an agent is often related to its shelf life and 

sustained activity in vivo. This superior property of TIC10 is an example of the overall goal of this 

project, which was to improve drug properties of recombinant TRAIL that limit its efficacy.  

 The lack of correlation between cancer cell sensitivity to TRAIL and TIC10 has several 

implications. First, this suggests that the biological activity of TIC10 is clearly different than 

TRAIL. This could be due to several reasons: (1) TIC10 causes other effects other than TRAIL 

induction that alter sensitivity to TRAIL-induced cell death, (2) the activity of TIC10-induced 

TRAIL differs from recombinant TRAIL, and (3) the activity of TIC10 is unrelated to TRAIL-
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mediated cell death. However, possibility (3) is unlikely given the demonstration of TRAIL-

dependent cell death induced by TIC10 using gene silencing, disruption of death receptor-

mediated proapoptotic signaling, and sequestration with a TRAIL-targeted antibody. Possibility (2) 

has precedent in the literature as different versions of recombinant TRAIL exhibited drastically 

different potency (Ganten et al., 2006; Pascal, 2000; Pitti et al., 1996; Walczak et al., 1999a) and 

membrane-bound TRAIL has been reported to have an enhanced potency and spectrum of 

activity compared to recombinant TRAIL (Armeanu et al., 2003; Mohr et al., 2004; Voelkel-

Johnson et al., 2002). It is a reasonable possibility that TIC10 causes changes in other proteins 

involved in TRAIL sensitivity (1) through regulation of gene transcription or other effects resulting 

from changes in cell signaling given that TIC10 is a small molecule and that its mechanism of 

TRAIL induction is possibly transcriptional. The activity of TIC10 in TRAIL-resistant cell lines 

bodes well for the utility of TIC10 as an anticancer agent.  

 TIC10 is a potent antitumor agent in vivo even when administered as a single dose. This 

may be a result of a prolonged half-life, temporally sustained effects of the molecule as 

demonstrated in vitro, potent cell death induction in tumors, and/or effects on cancer stem cells. 

In support of this, analysis of TIC10-treated tumors revealed a sustained upregulation of TRAIL 

and cell death throughout the tumor several days following treatment with a single dose. As seen 

in vitro, the antitumor activity of TIC10 requires TRAIL in vivo though this does not exclude the 

possibility that other molecular changes cooperate with TRAIL to cause the antitumor effects of 

TIC10. TIC10 treatment caused a sustained reduction of tumor growth or regression in the MDA-

MB-231 and RKO xenografts that was clearly superior to recombinant TRAIL under the given 

conditions and doses. The equivalent activity of TIC10 when administered as an intraperitoneal 

injection or oral dose suggests that TIC10 is bioavailable and represents an opportunity not 

possible with TRAIL, which requires intravenous administration. Dose titration revealed that 

TIC10 is highly active at an oral dose of 25 mg/kg, a dose that is achievable in patients. Weekly 

administration of oral TIC10 at this dose was sufficient to prolong the survival of transgenic mice 

harboring spontaneous myc-driven lymphoma by several weeks. The therapeutic effects of this 
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dosing schedule in such an aggressive model of cancer supports the use of this regimen in future 

studies.  

 The identification of synergy between TIC10 and taxanes provides a promising rationale 

for combining these agents in future clinical trials. Future studies should examine the mechanism 

of synergy between TIC10 and the approved agents. Both paclitaxel and docetaxel are approved 

for the treatment on NSCLC, among other malignancies, and synergize with TIC10 in NSCLC cell 

lines in vitro and cooperate to yield tumor cures in vivo. This makes NSCLC a promising disease 

target for TIC10 in future clinical trials. Future studies should also examine other potentially 

synergistic combinations with TIC10 such as sorafenib. Synergy has been reported with TRAIL 

combined with sorafenib (Ricci et al., 2007; Rosato et al., 2007), paclitaxel, and docetaxel.  

 The antitumor activity of TIC10 in GBM is promising as a monoagent and in cooperation 

with bevacizumab, which is an approved agent for the treatment of human GBM. The strong 

effect of TIC10 on overall survival in the intracranial tumor mouse model strongly suggests that 

TIC10 cross the intact blood-brain barrier and strongly argues for the clinical exploration of TIC10 

as a new treatment for GBM. The activity of TIC10 in primary tumor specimens and cell lines that 

are resistant to temozolomide, the standard-of-care chemotherapy administered in GBM, also 

bodes well for utility of TIC10 in GBM as a malignancy with dismal outcomes and few treatment 

options. TIC10 represents a novel and promising opportunity for offering the antitumor activity of 

TRAIL to brain malignancies and may be more readily amenable to clinical trials than other 

experimental approaches that have been proposed in preclinical studies such as TRAIL delivery 

by mesenchymal stem cells (Kim et al., 2008; Sun et al., 2011).  
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CHAPTER 4 

THE EFFECTS OF TIC10 ON NORMAL CELLS 
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4.1  Abstract  

The ability to selectively kill cancer cells while sparing normal cells is a virtue of targeted cancer 

therapies and is one of the most attractive properties of TRAIL. We therefore tested the effects of 

TIC10 on normal cells and hypothesized that TIC10 could increase TRAIL production in normal 

cells without toxic effects on themselves. Unlike cancer cells, TIC10 did not induce cell death in 

normal cells or inhibit their long-term proliferation. TIC10 also exclusively ablated the tumor cell 

subpopulation in a coculture of normal fibroblasts and p53-deficient cancer cells.  In agreement 

with this tumor-selective in vitro activity, TIC10 did not induce any significant toxicity in immuno-

deficient or –competent mice by assays that included body weight, liver histology, and serum 

chemistry. We next tested the hypothesis that TIC10 causes normal cells to upregulate TRAIL. 

We found that TIC10 induces TRAIL in normal fibroblasts and stromal fibroblasts in addition to 

serum, the brain, kidney, and spleen tissue of mice lacking tumors. As TRAIL does not induce 

apoptosis in normal cells, we next tested the possibility that TIC10-induced TRAIL upregulation 

on the surface of normal cells could selectively kill tumor cells. Interestingly, normal fibroblasts 

pretreated with TIC10 were capable of inducing cancer-specific cell death in a coculture with p53-

deficient cancer cells. We also showed that this cancer-specific cell death could be inhibited by 

sequestration of TRAIL by a monoclonal antibody. These observations suggest that TIC10 is not 

toxic to normal cells but does cause them to upregulate TRAIL in vitro and in vivo, which can 

result in an antitumor response through a TRAIL-mediated bystander effect.  

 

4.2  Introduction 

The original discovery reports of TRAIL showed its expression in a variety of human fetal and 

adult tissues including spleen, thymus, prostate, small intestine, and placenta (Pitti et al., 1996; 

Wiley et al., 1995). This was interpreted as promising for the safety of TRAIL by reasoning that 

wide expression throughout the body perhaps suggests tolerance of TRAIL by normal cells. While 

TRAIL is a very selective antitumor agent, there have been a few reports of potential toxicity 

issues. Despite a promising preclinical toxicity profile, one report found that recombinant His-

tagged TRAIL at a dose of 200 ng/mL potentiated high levels of apoptosis in human hepatocytes 



www.manaraa.com

83 

but not other species (Jo et al., 2000). This raised concern over the ability of the preclinical safety 

studies to predict safety. The El-Deiry lab confirmed the hepatotoxicity of His-tagged TRAIL and 

found that inhibition of caspase-9 was able to ablate hepatotoxicity while maintaing tumor cell 

cytotoxicity (Ozoren et al., 2000). Hepatocyte sensitivity to TRAIL was subsequently linked to bile 

acid-induced DR5 gene upregulation (Higuchi et al., 2002). However, a follow up study found that 

His-tagged rhTRAIL contains less zinc, which is important for structural integrity of the soluble 

trimer, and is less potent at inducing apoptosis than rhTRAIL that lacks the exogenous tag 

(Lawrence et al., 2001). Importantly, the untagged version of rhTRAIL did not induce human 

hepatocyte apoptosis, unlike its His-tagged counterpart, and similar observations were made with 

hepatotoxicity markers and histological analysis in cynomolgous monkeys.  

 Despite difficulties with delivery to the central nervous system (CNS), preclinical studies 

have suggested that TRAIL can eradicate intracranial human GBM tumors when administered 

intracerebrally (Roth et al., 1999). The selective apoptotic effects of rhTRAIL on glioma versus 

normal astrocytes have been directly demonstrated (Pollack et al., 2001). While human 

endothelial cells that comprise the blood-brain barrier are resistant to rhTRAIL (Wosik et al., 

2007), other types of normal brain cells have been reported as sensitive though these studies 

used a FLAG-tagged version of rhTRAIL and dose of >200 ng/mL (de Vries et al., 2000; Nitsch et 

al., 2000). TRAIL-induced cell death of human oligodendrocytes in the adult human brain appears 

to require either protein synthesis inhibition or interferon-gamma (Matysiak et al., 2002). One 

report found that the analgesic flupirtine-maleate could act as a protectant from TRAIL-mediated 

neurotoxicity (Dorr et al., 2005). DR5 is more highly expressed than DR4 in GBM and expression 

levels of either DR4 or DR5 are independent prognostic factors in GBM (Kuijlen et al., 2006).  

It is also worth noting that the cancer selective-activity and safety of adenoviral TRAIL 

has been reported, which causes a continuous production of TRAIL. This includes the 

demonstration of apoptotic selectively for cancer cells over normal cells in addition to a safety 

study in male baboons that found no clinical, serologic, or pathologic abnormalities with 

adenoviral TRAIL administration (Ni et al., 2005)(Cao et al., 2011). Due the intimate involvement 

of endogenous TRAIL in the mechanism of TIC10-induced cell death and our preliminary in vitro 
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data, we did not anticipate any significant toxicity. Nevertheless, we next directly determined the 

cancer-selective activity of TIC10 and assessed potential toxicity to normal cells in vitro and in 

vivo associated with TIC10 treatment at therapeutic doses.  

 

4.3 Materials and Methods 

Co-cultures  

Co-cultures of HCT116 p53-/- and HFF cells were performed in a 1:1 mixture of complete DMEM 

and McCoy’s 5A medium. For fluorescence images, the two cells were separately labeled using 

the Fluorescent Cell Linkers Kits for gene cell membrane labeling (Sigma) according to the 

manufacturer’s protocols. Cells were counterstained with Hoechst 33342 (1 µg/mL) for 10 

minutes. For flow cytometry analysis of cell death, the two populations of cells were determined 

by differential light scattering and analyzed as described for Sub-G1 analysis in the cell death 

assays section. 

 

TRAIL ELISA 

ELISA for TRAIL was carried out using the Quantikine TRAIL/TNFSF10 kit according to the 

manufacturer’s protocol (DTRL00, R&D systems, Minneapolis, MN). Optical correction was 

performed as suggested by the manufacturer with absorbance at 540nm. Absorbance was 

measured with a DTX 880 plate reader (Beckman Coulter). 

 

Serum Chemistry 

1mL of blood was harvested from anesthetized mice by terminal cardiac puncture of the left 

ventricle. For serum chemistry, 500 µL of harvested blood was placed into a microfuge tube and 

allowed to clot for 30 minutes at room temperature followed by centrifugation. Serum was 

removed, centrifuged again to remove any further clots, and serum was submitted for analysis.  
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4.4 Results 

TIC10 kills cancer but not normal cells 

One of the attractive therapeutic properties of TRAIL is its ability to induce cancer-specific cell 

death with no appreciable effects on normal cells. A key selection criterion for selecting TIC10 

over other TICs was its ability to kill cancer cells while sparing normal cells. However, these 

observations were made at lower doses that induced a modest amount of cancer cell death. We 

sought to test the effects of TIC10 on normal cells at more therapeutic doses. Our hypothesis was 

that TIC10 induces cancer-specific cell death due to the cancer-specific effects of TRAIL and the 

demonstrated involvement of TRAIL in the cytotoxic activity of TIC10. Treating normal fibroblasts 

and colon cancer cells with a dose of 5 µM clearly increased the Sub-G1 content in cell cycle 

profiles of cancer cells but not normal cells (Figure 4.1A). Furthermore, this dose of TIC10 had no 

affect on the ability of the normal cells to proliferate following incubation with TIC10 (Figure 4.1B). 

We next wished to directly prove that TIC10 killed tumor cells and not normal cells under identical 

conditions. To test this, we labeled normal fibroblasts and cancer cells with spectrally distinct 

amphipathic fluorescent dyes that insert into the membrane of cells. We found that TIC10 

treatment eradicated the cancer cell population while sparing the normal cells (Figure 4.1C). The 

ability of TIC10 to induce cancer-specific cell death is an important characteristic as a therapeutic 

and is a virtue of targeted therapies.   
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Figure 4.1 TIC10 induces cell death in tumor but not normal cells. (A) Cell cycle profiles of 

HFF untransformed fibroblasts and HCT116 cancer cells treated with TIC10 (5 µM, 72 hr, n=3). 

(B) Number of HFF cells at the end of a 10 day proliferation period preceded by TIC10 (10 µM) or 

DMSO treatment for 72 hr (n=3). (C) Co-culture of HCT116 p53-/- and HFF cells labeled as red 

and green, respectively. TIC10 (10 µM)- or DMSO-treated wells are shown immediately prior to 

treatment (day 0) or 3 days post-treatment. The bottom two panels were taken at the 3-day 

endpoint after being counterstained with Hoechst. Scale bar is 100 µm. Error bars indicate s.d. of 

replicates.  
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TIC10 has a favorable safety profile in vivo 

To corroborate the in vitro data that indicated the tumor-specific cytotoxic activity of TIC10, we 

next evaluated the safety of TIC10 in vivo. A single intraperitoneal dose of TIC10 at 100 mg/kg 

caused no changes in body weight of athymic nude mice (Figure 4.2A). Histological analysis of 

liver tissue harvested from these mice revealed no changes in liver histology at 3 days post-

treatment (Figure 4.2B). Chronic exposure to oral TIC10 at 25 mg/kg weekly for 4 weeks in 

immuno-competent C57/B6 female mice also did not cause any changes in body weight (Figure 

4.2C). It is also important to evaluate toxicity profiles in combination with other approved 

therapies. TIC10 alone and in combination with bevacizumab was well tolerated and caused no 

significant changes in body weight when given once a week for 4 weeks (Figure 4.2D). The lack 

of apparent toxicity at multiple doses delivered at 4-fold above this therapeutic dose in a previous 

xenograft along with no adverse effects on body weight or liver histology bodes well for the safety 

profile of TIC10. We additionally evaluated a panel of serum chemistry markers of toxicity to 

identify potential toxicity of specific organs that could be monitored closely in early phase trials 

through molecular. Encouragingly, oral TIC10 at 25 mg/kg weekly for 4 weeks in immuno-

competent C57/B6 female mice caused no alterations in the tested serum chemistry markers 

(Table 4.1).  
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Figure 4.2 TIC10 does not alter mouse body weight, liver histology, or serum chemistry. 

(A) Body weight of athymic, female nude mice treated with TIC10 (100 mg/kg, i.p.). (B) Body 

weight of C57/B6 female mice at the end of week 4 of treatment with TIC10 (25 mg/kg, PO, qwk). 

(C) H&E staining of liver from athymic, female nude mice harvested 3 days post-treatment with 

TIC10 (100 mg/kg, i.p.). (D) Body weight of athymic, female nude mice at the end of treatment 

consisting of TIC10 (25mg/kg, PO), bevacizumab (bev, 10mg/kg, i.v.), or the combination of 

TIC10 and bevacizumab once a week for 4 weeks. Serum chemistry is shown in Table 4.1.  
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Cohort Control TIC10 
Sodium (mM) 151.5±4.2 154.5±5.2 

Potassium (mM) 9.025±2.2 7.325±3.2 

Chloride (mM) 106.75±1.7 104 
Total bilirubin (mg/dl) 3.075±1.6 2.725±2.4 

Blood urea nitrogen (mg/dl) 26±1.6 33.75±7.3 

Creatinine (mg/dl) 0.25±.06 0.15±.06 
Total Protein (g/dl) 4.9±.36 4.97±.61 

Albumin (g/dl) 3±.08 2.9 
Alkaline phosphate (U/L) 104.5 112±12 

Lactate dehydrogenase (U/L) 265 287.5±125 

 

Table 4.1. Serum chemistry of C57/B6 female mice treated with oral vehicle or 

TIC10 (25 mg/kg) weekly for 4 weeks. Values are not significantly different between 

vehicle and TIC10 treatment groups.  
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Normal cells upregulate TRAIL in response to TIC10  

While performing IHC analysis on TIC10-treated tumors, we found that TIC10 not only induced 

TRAIL in the tumor but also in stromal fibroblasts bordering the tumor (Figures 4.3A). Following 

this observation, we explored the possibly that normal cells could make TRAIL in response to 

TIC10. Assaying for soluble TRAIL using ELISA in the serum of TIC10-treated non-tumor-bearing 

mice revealed elevated serum levels of TRAIL for at least 72 hours following TIC10 treatment, 

which is far longer than the serum half-life of recombinant TRAIL (~30 minutes) (Avi Ashkenazi, 

1999) (Figures 4.3B).  This data suggests that normal cells produce TRAIL in response to TIC10 

and that the effects of TIC10, i.e. TRAIL induction, are temporally sustained for days in vivo as 

seen in vitro. 

IHC analysis of normal tissues in TIC10-treated non-tumor bearing mice revealed that 

TRAIL is upregulated at the protein level in the brain, kidney, and spleen of mice without apparent 

toxicity as determined by histology and TUNEL staining (Figure 4.3C). The sustained induction of 

TRAIL in brain tissue suggested that TIC10 could cross the intact blood-brain barrier, unlike a 

large trimeric protein such as recombinant TRAIL, as previously suggested in the orthotopic GBM 

xenograft (Chapter 3). 

 We also found that TIC10 induces a significant amount of TRAIL on the surface of normal 

fibroblasts (Figure 4.4A). Based on these observations, we tested the possibility that normal cells 

may contribute to the anti-tumor efficacy of TIC10 through a TRAIL-mediated bystander effect. 

We found that transplanting normal fibroblasts that were preincubated with TIC10 into a co-

culture with p53-deficient colon cancer cells resulted in a modest but significant increase in cell 

death of the cancer cell sub-population (Figure 4.4B). Importantly, this increase in cancer-specific 

cell death was blocked with coincubation with the RIK-2 antibody that sequesters TRAIL 

(Kayagaki et al., 1999). Together, these data indicate that TIC10 has safe tumor-selective activity 

and induces TRAIL in tumor, stromal, and normal cells that may contribute to the anti-tumor 

efficacy of TIC10 through direct as well as bystander mechanisms. 
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Figure 4.3 TIC10 induces TRAIL in normal tissues in vivo. (A) H&E and IHC analysis for 

TRAIL at the border of tumor and stromal fibroblasts from HCT116 p53-/- xenograft tumors 

following treatment with TIC10 (100 mg/kg, i.p.) or vehicle on day 2 post-treatment. (B) TRAIL 

serum levels in tumor-free mice following TIC10 (100 mg/kg, i.v.) or doxorubicin (30 mg/kg, i.p.) 
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(n=2). (C) Histological and TRAIL IHC analysis of normal tissue in athymic, nude mice following 

TIC10 administration on Day 0 (100 mg/kg, i.v.). Error bars indicate s.d. of replicates.  

 

 

Figure 4.4. TIC10 can induce a TRAIL-mediated bystander effect involving normal cell-

mediated cell death of tumor cells. (A) Surface TRAIL analysis of HFF cells following TIC10 

treatment (0, 2.5, 5, or 10 µM from left to right)  (72 hr, n=3). (B) Sub-G1 analysis of a coculture 

of HCT116 p53-/- cells and pretreated HFFs (24 hr, n=3). HFF pretreatment consisted of 72 hr 

incubation with TIC10 (10 µM) or DMSO. These experiments were performed in the presence or 

absence of a TRAIL sequestering antibody (RIK-2; TRAIL blocking Ab). Error bars indicate s.d. of 

replicates. *P < 0.05 between the indicated condition and control unless otherwise indicated. 
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4.5  Discussion  

The ability of TIC10 to induce cancer-specific cell death is an attractive property underlying its 

selection as the lead TIC and is a property shared by recombinant TRAIL. The direct 

demonstration of TIC10 cytotoxic selectivity was demonstrated in a coculture experiment where 

TIC10 exclusively killed p53-deficient tumor cells but not normal cells. This in vitro demonstration 

of therapeutic index was corroborated by in vivo studies that showed no significant effects of 

TIC10 on the body weight, tissue histology, or serum chemistry profile of immuno-competent or –

compromised mice.  

 Serum TRAIL levels were elevated for days and detectable as early as 8 hours following 

intravenous injection of TIC10, which has several important implications. First, this means that 

normal cells are capable of upregulating TRAIL in response to TIC10. Second, the kinetics of 

TRAIL induction is quicker in vivo than the kinetics of TIC10-induced TRAIL observed in vitro. 

This difference in kinetics could be because: (1) there are additional cofactors present in vivo that 

may contribute to the more rapid TRAIL induction, (2) TIC10 is metabolized into an active 

compound and this occurs more quickly in vivo, (3) cells respond at different rates in the 

physiological setting as opposed to cell culture, and/or (4) the normal cells, or specific types of 

normal cells, in mice respond more quickly to TIC10 than human cells tested in cell culture. Third, 

the ability of TIC10-induced TRAIL to be secreted in vivo represents an opportunity for distal 

normal cells to respond to TIC10 in a way that may result in a tumor response. The feasibility of 

normal cells to upregulate TRAIL and contribute to cancer-specific cell death by a TRAIL-

dependent by stander effect was shown in vitro with coculture experiments using normal human 

fibroblasts.  

 The potential of TRAIL to induce cancer-specific cell death using normal cells has been 

recently recognized in the field. One such example has been the direct demonstration that 

mesenchymal stem cells overexpressing surface TRAIL can specifically kill tumors cells (Sun et 

al., 2011). This observation has also been seen with normal fibroblasts overexpressing TRAIL 

following adenoviral infection (Kagawa et al., 2001). Interestingly, the same group reported that 

these normal cell-mediated bystander effects with TRAIL require cell to cell contact and is 
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specifically mediated by surface rather than soluble TRAIL (Huang et al., 2003). TRAIL-mediated 

bystander effects have also been reported in response to radiation (Shareef et al., 2007; 

Unnithan and Macklis, 2004).  

Utilizing small molecules to gain efficacy and biodistribution by inducing an endogenous 

gene in lieu of administering the recombinant protein is a promising notion. Limitations of the 

recombinant protein such as perfusion and pharmacokinetic properties can be effectively 

overcome by adjusting that of the small molecule. Furthermore, a secreted protein such as TRAIL 

may be a particularly well-suited target for such strategy as normal cells at distal sites relative to 

the tumor can produce soluble proteins that contribute to the therapeutic response via a 

bystander mechanism. This strategy has the potential to produce large quantities of TRAIL as the 

trillions of cells in the human body universally harbor the potential to produce endogenous 

proteins in a temporally sustained fashion. However, this bystander protein production strategy 

must be employed carefully as normal cells must maintain their normal function and the target 

protein must be nontoxic to the normal cells, as is the case for TRAIL.  

 

 

 

 

 

 



www.manaraa.com

95 

CHAPTER 5 

TIC10 REQUIRES FOXO3A FOR TRAIL UPREGULATION AND ANTITUMOR ACTIVITY
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5.1  Abstract 

TIC10 induces TRAIL in a p53-independent manner by a transcriptional mechanism. We 

performed expression profiling on TIC10-treated HCT116 p53-/- cells at 18 and 48 hours following 

TIC10 treatment. Network analysis of these changes in mRNA levels suggests that TIC10-

induced changes were occurring in FOXO target genes. FOXO is a family of transcriptional 

factors that have been reported to regulate the TRAIL gene as well several other pro-apoptotic 

genes such as DR5. In accordance with this observation, we found that TIC10 induced DR5 

upregulation in several cancer cell lines in vitro and in xenograft tumors. Immunofluorescence 

experiments indicated that Foxo3a rather than other family members was translocating to the 

nucleus following exposure to TIC10. Chromatin immunoprecipitation experiments revealed that 

Foxo3a binds to the TRAIL promoter in a dose-dependent manner. Using siRNA and shRNA, we 

found that knockdown Foxo3a was responsible for TIC10-induced TRAIL and the ensuing cell 

death in vitro and in vivo. These data directly demonstrate that Foxo3a is the transcription factor 

that drives TIC10-induced TRAIL.  

 

5.2  Introduction 

The TRAIL gene contains a ~1.6kB promoter region upstream of the start of transcription, which 

is 97 bp upstream of the start of translation (Wang et al., 2000) (reviewed in Chapter 1.3). This 

report identified several putative transcription factor binding sites in the TRAIL gene promoter: 

NHF3, GKLF, AP-1, CEBP, NFAT, GATA, and Inteferon-γ-activated sequence (GAS), GSP1, 

GSP2, and GSP4. Sequential deletion of various regions of the TRAIL promoter controlling 

luciferase reporters revealed that the regions between -1371 to -819 and -165 to -35 are 

responsible for basal TRAIL transcriptional activity.  Since this initial report, several inducers of 

the TRAIL gene have been identified and transcription factor binding sites have been evaluated.  

As TRAIL is conditionally expressed by a variety of immune cells, it is perhaps not 

surprising that the TRAIL gene is positively regulated by several transcription factors involved in 

modulating, activating, or attenuating immune cell responses such as interferons (Griffith et al., 

1999) (Kim et al., 2002) (Tu et al., 2011) (Kayagaki et al., 1999) (Solis et al., 2006) (Yanase et al., 
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2005), NFAT (Wang et al., 2000; Wang et al., 2011c), and NFκB (Baetu et al., 2001) (Matsuda et 

al., 2005) (Cippitelli et al., 2003) (Su et al., 2012). Some small molecules with other targets have 

been described to induce the TRAIL gene such as retinoids through an IRF-1-dependent 

mechanism (Clarke et al., 2004) (Kirshner et al., 2005), or HDACi through an SP-3-dependent 

mechanism (Nebbioso et al., 2005), and thalidomide (Yang et al., 2011).  

The human TRAIL gene promoter contains two putative FOXO binding sites, one of 

which has been shown to play a role in FOXO-mediated TRAIL transcriptional activity by a 

luciferase reporter gene assay (Modur et al., 2002). FOXO contains four human family members: 

Foxo1, Foxo3a, Foxo4, and Foxo6. While differential regulation by these family members has not 

been completely elucidated, it is clear that they have unique actives and play different roles in 

development and diseases. In the context of TRAIL gene regulation, Foxo1 and particularly 

Foxo3a have been identified as transcriptional regulators but the differential affinity and biological 

consequences have not been defined.  

Some oncogenic mechanisms routinely involved in transformation have been linked to 

TRAIL gene regulation in its promoter region such as mutant Ras-induced TRAIL expression 

silencing (Lund et al., 2011) and the TRAIL gene is also under positive regulation by the p53 

tumor suppressor protein (Kuribayashi et al., 2008). Among FOXO family members, Foxo3a has 

been shown to induce TRAIL gene expression in prostate cancer cells (Modur et al., 2002) via a 

consensus binding site between -121 and -138 in the TRAIL gene promoter. There are several 

other putative transcription factor-binding sites within the TRAIL gene promoter that have not 

been tested and may play a role in particular physiological settings or could be usurped by small 

molecules to regulate TRAIL expression.  

 

5.3 Materials and Methods 

Gene expression analysis. HCT116 p53-/- cells were grown in log-phase and treated with 

DMSO or TIC10 (10µM). At 48 hr post-treatment, RNA was isolated using the RNeasy Mini Kit 

(Qiagen). Microarray analysis was performed using the Illumina HT-12 Beadchip (Illumina) in the 

PSU-COM Genome Sciences Facility.  RNA quality and concentration was assessed using an 
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Agilent 2100 Bioanalyzer with RNA Nano LabChip (Agilent).  cRNA was synthesized by TotalPrep 

Amplification (Ambion) from 500 ng of RNA according to manufacturer’s instructions.  T7 oligo 

(dT) primed reverse transcription was used to produce first strand cDNA.  cDNA then underwent 

second strand synthesis and RNA degradation by DNA Polymerase and RNase H, followed by 

filtration clean up.   In vitro transcription (IVT) was employed to generate multiple copies of 

biotinylated cRNA.   The labeled cRNA was purified using filtration, quantified by NanoDrop, and 

volume-adjusted for a total of 750 ng/sample.   Samples were fragmented, and denatured before 

hybridization for 18 hr at 58°C.  Following hybridization, beadchips were washed and 

fluorescently labeled.   Beadchips were scanned with a BeadArray Reader (Illumina).  A project 

was created with the resultant scan data imported into GenomeStudio 1.0 (Illumina).  Results 

were exported to GeneSpring Gx11 (Agilent Technologies).  Measurements less than 0.01 were 

then set to 0.01, arrays normalized to the 50th percentile, and individual genes normalized to the 

median of controls. For network analysis of transcriptional changes induced by TIC10, the dataset 

was analyzed using the Ingenuity Pathway Analysis software (Ingenuity Systems). Microarray 

data is included in Appendix 1 and the raw data has been deposited to GEO 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=ppihbcummescwji&acc=GSE34194).   

 

Surface DR5 analysis 

Cells were harvested by brief trypsinization and fixed in 4% paraformaldehyde in PBS for 20 

minutes at room temperature. After washing with PBS, cells were then incubated with the anti-

DR5 primary antibody (IMG-120A, Imgenex) for 1 hr at 1:200 followed by a secondary antibody 

incubation and flow cytometry analysis as with surface TRAIL assays described in Chapter 2.  

 

Immunofluorescence  

Immunofluorescence was performed as described in Chapter 3 with the following antibodies: 

Foxo1A (ab39670, abcam), Foxo3a (ab47409, abcam), Foxo4 (ab63254, abcam). 
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Western blot analysis 

Western blot analysis was performed as described in Chapter 3. Nuclear and cytoplasmic 

extracts were prepared using a cytoplasmic lysis buffer (10 mM HEPES, 10 mM KCl, and 2 mM 

MgCl2, 1 mM DTT) followed by a nuclear lysis buffer (20 mM HEPES, 420 mM NaCl, 1.5 mM 

MgCl2, 250 µM EDTA, 25% glycerol). The following antibodies used were at 1:500 or 1:1000: 

pIκB (9241S, Cell Signaling), pS294 Foxo3a (5538S, Cell Signaling), pS253 Foxo3a (9466S, Cell 

Signaling), Foxo3a (9467S, Cell Signaling), pGSK3-β (9323S, Cell Signaling), ERK (9102S, Cell 

Signaling), pERK (4377S, Cell Signaling), pT308 Akt (9275S, Cell Signaling), pT473 Akt (92755S, 

Cell Signaling), Caspase-3 (9662S, Cell Signaling), Caspase-8 (9746S, Cell Signaling), DR5 

(3696S, Cell Signaling), Akt (4685S, Cell Signaling), actin (sc-10731, Santa Cruz), Lamin B1 

(ab16048, Abcam). Ran (610341, BD Transduction) was used at 1:10,000.  

 

Stable knockdown of Foxo3a 

The construct containing the Foxo3a shRNA was obtained from Sigma. Lentiviral infection was 

performed as described in Chapter 3.  

 

Chromatin Immunoprecipitation Assay 

Cells were grown under indicated conditions in one T75 flask per condition. Adherent cells were 

harvested by trypsinization and rinsed twice with PBS at room temperature. Cells were 

resuspended at 5X105 cells per mL in PBS. Formaldehyde was added to a final concentration of 

1% and incubated for 10 minutes on ice. Glycine (2.5 M stock) was added to a working 

concentration of 0.125 M and incubated at room temperature for 5 minutes. Cells were pelleted at 

1100 RPM for 5 minutes, washed with ice cold PBS, and resuspended in 6 mL of Lysis Buffers (5 

mM PIPES, pH 8.0, 85 mM KCl, .5% NP-40, protease inhibitors (Roche). Cells were centrifuged 

for 5 minutes at 1100 RPM, rinsed in PBS, and the supernatant was removed to leave the pellet 

(nuclear fraction). The pellet was lysed in high salt Lysis buffer (1X PBS, 1% NP-40, .5% sodium 

deoxycholate, 0.1% SDS, protease inhibitors) and placed into 1.5 mL centrifuge tubes in 300 µL 
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aliquots. Aliquots were sonicated to shear DNA and centrifuged for 15 minutes at 10,000 RPM at 

4°C. The protein concentration was determined using the BioRad protein assay according to the 

manufacturer’s protocol and bovine serum albumin (BSA) as a standard. 500 µg of protein was 

aliquoted into a new microcentrifuge tube and diluted to 1 mL in high salt lysis buffer. Each aliquot 

was then precleared with 30 µL of Protein A-G Plus beads (Santa Cruz) for 30 minutes at 4°C. 

Suspension was then centrifuged at full speed for 5 minutes at 4°C and aliquoted between 2 

tubes per sample in addition to 100 µL for an input control. The primary antibody was added 

overnight at 1 µg per sample and incubated overnight at 4°C rotating. The following day, 30 µL of 

Protein A-G Plus beads were added to each tube and tubes were rotated for 2 hours at 4°C. 

Suspension was then centrifuged, washed twice with high salt Lysis buffer, and 4 times with wash 

buffer (100 mM Tris, pH 8.0, 500 mM LiCl, 1% NP-40, 1% sodium deoxycholate). 100 µL of 

Chelex (10% in dH2O) was added, vortexed, boiled for 10 minutes, and cooled to room 

temperature. The mixture was then vortexed, pelleted, and 75 µL of supernatant was removed to 

a new microcentrifuge tube. 100 µL of solution was added to the beads, vortexed, pelleted, and 

100 µL was extracted and added to the other 75 µL of extract. PCR was then conducted by 

standard protocol using primers against the appropriate genomic region as previously described 

(Nebbioso et al., 2005). Electrophoresis and visualization was performed as described for the RT-

PCR standard protocol.  

 

Transient knockdown by siRNA 

siRNA stocks were made by diluting the siRNA to a stock concentration of 10 µM using nuclease 

free H2O. 100 µL of Optimem was mixed with 8 µL of siRNA in a sterile transfection tube for 5 

minutes under sterile conditions. 100 µL of Optimem was mixed with 8 µL Lipofectamine 

RNAiMax in a separate sterile transfection tube for 5 minutes. Mixtures were then combined into 

one tube and incubated for 30 minutes. The mixture was then added to a 2 mL suspension of 

cells (500,000 cells in a 35mm dish) with media containing serum without antibiotics. Cells were 

incubated overnight under standard conditions and complete media was provided the following 



www.manaraa.com

101 

day. The following siRNA were used: Foxo1A (L-003006-00, Dharmacon), Foxo3A (M-003007-

02, Dharmacon).  

5.4  Results 

TIC10 causes changes in FOXO target genes  

TIC10 causes the transcriptional upregulation of TRAIL via a mechanism that leads to potent 

antitumor effects. To identify the molecular events driving TIC10-induced upregulation of TRAIL, 

we investigated gene expression profiles in TIC10-treated HCT116 p53-/- cells at 18 and 48 hours 

following treatment. These experiments revealed numerous changes in mRNA levels with the 

majority of events occurring at 48 hours post-treatment rather than 18 hours (Figure 5.1, 

Appendix 1). Next we performed a network analysis of these transcriptional changes to identify 

transcription factors that could potentially mediate these events. We found that target genes of 

the FOXO family of transcription factors were changing at 48 hours post-treatment (Figure 5.2), 

which have been previously shown to regulate the TRAIL gene promoter that harbors a 

consensus binding sequence (Modur et al., 2002).  

Among the identified TIC10-induced changes in FOXO target genes was the upregulation 

of DR5, one of the proapoptotic TRAIL receptors. We found that DR5 was upregulated by TIC10 

in a dose-dependent manner (Figure 5.3A). This induction of DR5 was also seen at the surface of 

several cancer cell lines and to a much lesser extent in normal cells (Figure 5.3B). Furthermore, 

IHC analysis of TIC10-treated tumors revealed an induction of DR5 at the protein level (Figure 

5.3C). 
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Figure 5.1. Expression profiling of TIC10-induced changes. (A) Heat map of significant 

changes in mRNA levels between DMSO- versus TIC10 (10 uM)-treated HCT116 p53-/- cells at 

18 and 48 h post-treatment (n=3). (B) Venn diagram of  significant TIC10-induced changes at 18 

hr (red) and 48 hr (blue). (C) Volcano plots of TIC10-induced changes at 18 or 48 hr. 
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Figure 5.2. TIC10 induces transcriptional changes in FOXO target genes. Transcriptional 

changes associated with FOXO signaling from expression profiling of HCT116 p53-/- cells at 48 hr 

following DMSO or TIC10 treatment (10 µM) treatment (n=3). All transcriptional changes were 

P<.05 between control and TIC10 treatment groups. 
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Figure 5.3. DR5 is induced by TIC10 in vitro and in vivo. (A) Western blot analysis of DR5 in 

HCT116 cells treated with TIC10 or DMSO at indicated concentrations for 72 hr. Ran shown as a 

loading control. (B) Flow cytometry analysis of surface DR5 levels in cancer and normal cells 

treated with TIC10 for 72 hr (n=3). (C) IHC analysis of DR5 in HCT116 xenograft tumors treated 

with vehicle (i.p.) or TIC10 (100 mg/kg, i.p.) on day 0. Error bars indicate s.d. of replicates. *P < 

0.05 between indicated conditions. 
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TIC10 induces the nuclear translocation of Foxo3a 

The regulation of FOXO family members is often achieved by modifications that change their sub-

cellular localization, i.e. transcriptional activity is positively correlated with nuclear localization. 

Therefore we performed immunofluorescence analysis of FOXO family members to identify which 

of the family members were potentially responding to TIC10. We found that among FOXO family 

members, Foxo3a underwent a nuclear translocation in response to TIC10 at 48 hours post-

treatment with TIC10 (Figures 5.4). To gain additional evidence that Foxo3a was translocating to 

the nucleus in response to TIC10, we performed Western blot analysis on subcellular fractions. 

These subcellular fractionation experiments corroborated the immunofluorescence experiments 

that indicated a TIC10-induced nuclear translocation (Figure 5.5A). Furthermore, this 

translocation was also noted in other cell lines that included H460 NSCLC and SW480 colon 

cancer cells (Figure 5.5B-C).  

 

Figure 5.4. Foxo3a but not other FOXO family members translocate to the nucleus in 

response to TIC10. Immunofluorescence of (A) Foxo1, (B) Foxo4, and (C) Foxo3a in HCT116 

p53-/- cells at 48 hr post treatment with DMSO or TIC10 (10 µM). FOXOs are shown in green and 

Hoechst 33342 is shown in blue as a nuclear counterstain. 
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Figure 5.5. TIC10 induces the nuclear translocation of Foxo3a. (A) Western blot analysis of 

whole cell lysates (W) and cytoplasmic (C) and nuclear (N) extracts from HCT116 cells treated 

with DMSO or TIC10 (48 hr, 10 µM). β-actin and lamin B1 are shown as cytoplasmic and nuclear 

loading controls, respectively. Immunofluorescence of Foxo3a in (B) H460 and (C) SW480 cells 

at 48 hr post treatment with DMSO or TIC10 (10 µM). Foxo3a is shown in green and Hoechst 

33342 is shown in blue as a nuclear counterstain. 
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Foxo3a mediates TIC10-induced TRAIL in vitro 

With the observation that TIC10 was causing the nuclear translocation of Foxo3a, we predicted 

that this would result in an increase in Foxo3a binding to the TRAIL promoter. We conducted a 

chromatin immunoprecipitation assay that revealed a dose-dependent increase in the amount of 

Foxo3a localized to the TRAIL promoter (Figure 5.6). Next, we tested if the TIC10-induced effects 

on Foxo3a were responsible for the upregulation of TRAIL by TIC10. Using siRNA, we found that 

Foxo3a specifically mediates TIC10-induced TRAIL upregulation (Figure 5.7A). For further 

mechanistic studies, we created a cell line with stable knockdown of Foxo3a using shRNA 

delivered by lentiviral infection. Stable knockdown of Foxo3a significantly inhibited TIC10-induced 

upregulation of TRAIL as well as cell death (Figure 5.7B-C). Importantly, stable knockdown of 

Foxo3a was also sufficient to strongly inhibit the antitumor effects and hallmarks of TRAIL-

mediated apoptosis resulting from TIC10 in vivo (Figures 5.8). Together, these data clearly 

indicate that Foxo3a is critical for TRAIL upregulation in response to TIC10 and the ensuing 

antitumor activity. 

 

 

Figure 5.6. Foxo3a binds to the TRAIL promoter in response to TIC10. Chromatin 

immunoprecipitation assay for TIC10-induced translocation of Foxo3a to the TRAIL promoter at 

48 hr post-TIC10 treatment in HCT116 p53-/- cells (0, 2.5, 5, or 10 µM from left to right). 
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Figure 5.7. Foxo3a mediates TIC10-induced TRAIL and cell death in vitro. (A) Flow 

cytometry analysis of cell surface TRAIL levels induced by TIC10 (10 µM) with or without 

transient knockdown of Foxo1 and/or Foxo3a in HCT116 p53-/- cells using siRNA (72 hr, n=3). 

Confirmation of knockdown is shown by Western blot analysis (right). (B) Flow cytometry analysis 

of cell surface TRAIL levels induced by TIC10 with or without stable knockdown of Foxo3a in 

HCT116 WT p53 cells (10 µM, 72 hr, n=3). (C) Sub-G1 analysis of TIC10-induced cell death with 

or without stable knockdown of Foxo3a in HCT116 cells (10 µM, 72 hr, n=3). Error bars indicate 

s.d. of replicates. *P < 0.05 between indicated conditions. 
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Figure 5.8. Foxo3a mediates TIC10-induced TRAIL and cell death in vivo. (A) Tumor volume 

of HCT116 xenograft with or without stable knockdown of Foxo3a following a single oral dose of 

vehicle or TIC10 (25 mg/kg) on day 0 (n=10). (B) TRAIL IHC analysis and TUNEL staining of 

HCT116 tumors with or without stable knockdown of Foxo3a 3 days after a single dose of TIC10 

(25 mg/kg, oral). Scale bars are 100 µm. Error bars indicate s.d. of replicates. *P < 0.05 between 

the indicated condition and control unless otherwise indicated. 
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5.5  Discussion  

We utilized expression profiling to identify transcriptional changes that occur in response to TIC10 

in an effort to identify the mechanism of TIC10-induced TRAIL gene upregulation. We found that 

TIC10-induced changes in Foxo3a target genes were occurring at 48 hours post-treatment, which 

is in accordance with the kinetics of TRAIL induction by TIC10. Foxo3a has been previously 

described to regulate the TRAIL gene promoter via a canonical binding site proven to be essential 

for positive regulation using luciferase reporter gene assays (Modur et al., 2002). We had 

previously noted that TIC10 induces TRAIL-mediated apoptosis in some cancer cell lines that 

were moderately resistant to recombinant TRAIL. In an effort to explain this difference in activity, 

we explored the possibility that TIC10 caused changes in proteins that impact on TRAIL 

sensitivity. Among these factors, we found that DR5 is upregulated in TIC10-treated cancer cells 

and xenograft tumors. This observation is in accordance with activation of Foxo3a by TIC10 as 

DR5 is also a Foxo3a target.  

 The unique effects of TIC10 on Foxo3a among the FOXO family imply that this member 

has potentially unique modes of regulation and perhaps activity. This exclusive effect may be due 

to the potent effects of TIC10 on pERK, as ERK appears to be a unique regulator of Foxo3a 

(Yang et al., 2008a; Yang et al., 2008b). Another noteworthy observation is the critical 

involvement of TRAIL rather than other proapoptotic FOXO targets such as FasL and Bim. As 

described in detail in Chapter 1, the activity of FOXO is governed by multiple factors including 

post-translational modifications and transcription cofactors that are thought to give rise to a 

“FOXO code” (Calnan and Brunet, 2008). FOXOs have been reported to induce different subsets 

of FOXO target genes such as the recent report of Foxo3a-mediated TRAIL gene induction but 

not DR4 or DR5 (van Grevenynghe et al., 2011).  

 It is clear that TIC10 causes a dose-dependent increase in the amount of Foxo3a 

localized to the TRAIL promoter in a very similar manner to the dose-dependent increase of 

TIC10-induced surface TRAIL. This suggests a linear positive relationship between Foxo3 and 

TRAIL gene transcription. Future studies should examine if this dose-dependent effect is absent 

for certain FOXO target genes such as FasL, which we did not see in expression profiling of 
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TIC10-induced changes. The role of transcription cofactors in TIC10-induced Foxo3a activation 

should also be examined as these proteins can critically regulate its activity and specificity for 

certain target genes, which may explain the preference of Foxo3a for certain target genes such 

as TRAIL following TIC10 exposure.  

The identification of Foxo3a as the critical transcription factor responsible for TIC10-

induced effects has implications that extend beyond the molecule itself. Firstly, our observations 

strongly argue that TRAIL plays an essential role in the apoptotic response induced by Foxo3a 

and positions Foxo3a as a promising drug target for inducing the TRAIL gene. The conservation 

of the Foxo3a-dependent mechanism of TIC10 in the presence of upstream oncogenic alterations 

such as mutant KRAS or PTEN deletions holds promising therapeutic potential. The observation 

that Foxo3a rather than Foxo1, which has been previously targeted by small molecules (Kau et 

al., 2003), specifically regulates the TIC10-induced response lends credence to the notion that 

different members of the FOXO family of transcription factors play distinct roles.  
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CHAPTER 6 

THE DUAL INHIBITION OF AKT AND ERK COOPERATIVELY INDUCES TRAIL 
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6.1  Abstract  

The regulation of Foxo3a is primarily by post-translational modifications that affect its subcellular 

localization. Therefore, we explored changes in the activity of kinases that regulate Foxo3a 

following TIC10 treatment. We found that both Akt and ERK were being inactivated by TIC10 and 

this inactivation concomitantly decreased the phosphorylation of Foxo3a at their respective 

binding sites. Importantly, these events started at later time points following TIC10 treatment, as 

did the upregulation of TRAIL, which supports these observations as a plausible mechanism for 

TRAIL upregulation by TIC10. Also in support of this mechanism, we found that overactivation of 

Akt could induce TIC10 resistance and that TIC10 sensitivity determinants appear to involve the 

PI3K/Akt and MAPK pathways. This putative mechanism led us to the hypothesis that Akt and 

ERK are critical regulators of Foxo3a and that dual inhibition of these kinases is sufficient to 

induce Foxo3a-dependent TRAIL and cytotoxicity. In support of this hypothesis, we found that 

dual inactivation of Akt and ERK using commercially available compounds cooperatively 

increased TRAIL and cancer cell death in a Foxo3a-dependent manner. These observations 

support that the mechanism of TIC10 involves inactivation of Akt and ERK, which is sufficient to 

upregulate Foxo3a-dependent TRAIL and cause cancer cell death. 

 

6.2  Introduction 

FOXO is a family of transcription factors comprised of 4 mammalian members (Foxo1, Foxo3a, 

Foxo4, and Foxo6) that regulate genes involved in numerous cellular processes that include 

metabolism, longevity, tumor suppression, and development (Calnan and Brunet, 2008). Foxo3a 

has been previously described as a direct regulator of the TRAIL through a FOXO binding site in 

the TRAIL gene promoter (Modur et al., 2002). The regulation of Foxo3a can be through post-

translational modifications (PTMs) that currently include phosphorylation, acetylation, and 

ubiquitination. These modifications often affect FOXO subcellular localization through the 

changing the accessibility of nuclear localization and nuclear export sequences that is conserved 

among FOXOs.  
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 Akt is a particularly strong regulator of FOXOs that phosphorylates 3 conserved residues 

(Biggs et al., 1999; Brunet et al., 1999; Kops et al., 1999; Nakae et al., 1999). Upon 

phosphorylation, the Akt phosphorylation sites allow 14-3-3 proteins to bind to FOXOs, expose 

their nuclear export sequences, and affects the accessibility of their nuclear localization 

sequences (Brunet et al., 2002; Obsilova et al., 2005). Serum glucocorticoid kinase (SGK) can 

functionally substitute for Akt-mediated phosphorylation events on FOXOs. Several other FOXO 

residues are phosphorylated to facilitate its interaction with the nuclear export proteins Ran and 

Crm1 that shuttle FOXOs between the nucleus and cytoplasm (Rena et al., 2002; Zhao et al., 

2004). The stress-activated kinases JNK and MST1 cause activating phosphorylation events on 

Foxo3a (Lehtinen et al., 2006) and Foxo4 (Essers et al., 2004; Oh et al., 2005), respectively, 

which results in their nuclear translocation. These activating phosphorylation events antagonize 

the Akt-mediated inhibitory phosphorylation events. AMPK phosphorylates Foxo3a at two sites 

and results in a distinct response that activates transcription of FOXO target genes specifically 

involved in energy metabolism and stress resistance (Greer et al., 2007).   

FOXO proteins can also be regulated by ubiquitin-mediated proteasomal degradation. 

FOXO degradation has been reported following phosphorylation by Akt (Matsuzaki et al., 2003; 

Plas and Thompson, 2003). Foxo1 degradation has been linked to polyubiquitination by the 

SCFskp2 complex (Huang et al., 2005). Skp2 has been recently shown to also polyubiquitinate 

Foxo3a (Wang et al., 2011a),. Interestingly, there may be a negative feedback mechanism in 

place as Foxo3a negatively regulates Skp2 gene transcription (Wu et al., 2012). Foxo3a is also 

degraded following phosphorylation by IkappaB kinase (Hu et al., 2004a).  

Activation of cytoplasmic FOXO may be accomplished through inactivation of the 

phosphorylating kinases that antagonize FOXO activity and/or activation of phosphatases such 

as PP2A (Singh et al., 2010). FOXO is also controlled and fine-tuned by numerous transcription 

cofactors in response to various stimuli in a highly context-dependent manner. Thus, FOXO 

regulation is quite multi-modal and FOXO may be activated through a number of mechanisms 

that include post-translational modifications mediated by kinases and phosphatases, acetylation 

mediated by acetylases and deacetylases, degradation mediated by Skp2, and differential 



www.manaraa.com

115 

association between transcription cofactors. With these previously defined mechanism of FOXO 

regulation, we began to search for TIC10-induced changes in regulators of Foxo3a.  

 

 

6.3 Materials and Methods 

Reagents 

U-126 monoethanolate (Sigma) and A6730 were suspended at 20mM in DMSO and stored at      

-20°C.  

 

Western blot analysis 

Western blot analysis was performed as described in Chapter 3. The following antibodies were 

used: Ran (610341, BD Transduction), pIκB (9241S, Cell Signaling), pS294 Foxo3a (5538S, Cell 

Signaling), pS253 Foxo3a (9466S, Cell Signaling), Foxo3a (9467S, Cell Signaling), pGSK3-β 

(9323S, Cell Signaling), GSK3β (Cell Signaling 9315), ERK (9102S, Cell Signaling), pERK 

(4377S, Cell Signaling), pT308 Akt (9275S, Cell Signaling), pT473 Akt (92755S, Cell Signaling), 

Akt (4685S, Cell Signaling), actin (sc-10731, Santa Cruz). Densitometry was performed using 

NIH ImageJ software.   

 

Gene set enrichment analysis  

Gene set enrichment analysis was performed with default settings using GSEA software 

(http://www.broadinstitute.org/gsea/index.jsp) (Subramanian et al., 2005).  

 

Transient knockdown of Akt and ERK 

siRNA-mediated knockdown was performed as described in Chapter 5. siRNA used was: Akt 

(6211S, Cell Signaling) and ERK (6560S, Cell Signaling).  
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6.4 Results 

TIC10 inhibits Akt and ERK-mediated phosphorylation of Foxo3a 

We explored TIC10-induced changes in previously described regulators of Foxo3a starting with 

the prosurvival kinases IKK (Finnberg and El-Deiry, 2004; Hu et al., 2004b), Akt (Wang and El-

Deiry, 2004), and ERK (Yang et al., 2008a; Yang et al., 2008b). We selected these kinases as a 

starting point due to their well-defined signaling mechanisms, availability of antibodies for 

substrates as a readout of activity, and their previously described potent regulation of FOXO 

activity. We found that both pAkt and pERK were abolished with TIC10 treatment in a dose-

dependent manner that was accompanied by decreased phosphorylation at their respective sites 

on Foxo3a (Figure 6.1A). These TIC10-induced effects on Foxo3a were evident in several cancer 

cell lines of different tumor types, which include human cancer cell lines with diverse genetic 

backgrounds that harbor heterogeneous oncogenic alterations in p53, KRAS, PTEN, and others 

(Figure 6.1B).  

We then tested if the identified effects of TIC10 involving Akt, ERK, and Foxo3a 

coincided with the induction of TRAIL in terms of kinetics. A time course analysis revealed that 

TIC10-induced inactivation of Akt and ERK occurred after 48 hours - kinetics that were concerted 

with the dephosphorylation of Foxo3a and TRAIL upregulation (Figures 6.2). It appears that 

TIC10-induced effects on Akt, ERK, Foxo3a, and TRAIL begin at 48 hours and increase at 60 and 

72 hours post-treatment.  
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Figure 6.1. TIC10 inactivates Akt and ERK. (A) Western blot analysis of HCT116 p53-/- cells 

treated with DMSO or TIC10 (2.5, 5, 10 µM) for 72 hr. (B) Western blot analysis of TIC10-induced 

effects on Foxo3a phosphorylation in DLD1 human colon cancer cells, MDA-MB-468 human 

breast cancer cells, and T98G human glioblastoma multiforme cell lines (10 µM, 72 hr). 
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Figure 6.2. TIC10-induced effects on Foxo3a and TRAIL upregulation occur with similar 

kinetics. (A) Western blot analysis of HCT116 p53-/- cells treated with TIC10 (10 µM) for 

indicated time periods. (B) Time course of protein expression levels of TIC10-induced effects 

determined by densitometry of blots from (A) (n=3). TRAIL was quantified by flow cytometry as a 

parallel experiment (n=3). 
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Overactivation of Akt confers resistance to TIC10  

Our observations indicate that TIC10 inhibits Akt activation and requires Foxo3a for TIC10-

induced TRAIL and cancer cell death. We found that Akt is an important determinant of cytotoxic 

sensitivity to TIC10 as overexpression of myristoylated Akt was sufficient to reverse the TIC10-

induced nuclear translocation of Foxo3a (Figure 6.3A). In accordance with this observation, 

overexpression of myristoylated Akt also inhibited TIC10i-nduced TRAIL and cancer cell death 

(Figure 6.3B-C).  

We previously noted that the cancer cell lines RXF393, IGROV-1, KM12, and SF539 are 

resistant to TIC10 compared to other cancer cell lines in the NCI 60 panel. We then performed an 

in silico analysis on expression profiles of TIC10-resistant versus –sensitive cancer cell lines from 

the NCI60. Interestingly, TIC10-resistant cell lines were enriched for transcriptional events 

associated with G-protein coupled receptor signaling (Figure 6.4), which involves the PI3K/Akt 

pathways as well as the MAPK pathway. The results of this analysis are in agreement with the 

observations that the mechanism of TIC10 involves PI3K/Akt and the MAPK pathway and that Akt 

overactivation of Akt can potentiate TIC10 resistance. Together, these data indicated that TIC10 

inactivates Akt and ERK, which subsequently inhibits their phosphorylation of Foxo3a that 

normally sequesters Foxo3a to the cytoplasm (Figure 6.5).  
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Figure 6.3. Overactivation of Akt contributes to cancer cell resistance to TIC10-induced 

TRAIL and cell death. (A) Immunofluorescence of Foxo3a in HCT116 cells overexpressing an 

empty vector or myristoylated Akt (myr-Akt) with TIC10 treatment (10 µM, 48 hr). Confirmation of 

overexpression of myr-Akt by Western blot analysis shown in right panel. (B) Flow cytometry 

analysis of surface TRAIL and (C) Sub-G1 content of HCT116 cells overexpressing an empty 

vector or myr-Akt with TIC10 treatment (10 µM, 72 hr, n=3).  
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Figure 6.4. Gene set enrichment analysis of TIC10-sensitive versus –resistant cancer cell 

lines from the NCI60. TIC10-resistant cells are highlighted in yellow. Genes that are upregulated 

are indicated in blue whereas downregulated genes are indicated in red. Right panel shows 

enrichment plot for GPCR signaling genes in TIC10-resistant cell lines.  
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Figure 6.5. Model of TIC10-induced signaling effects that upregulate TRAIL. TIC10 causes 

dual inactivation of the prosurvival kinases Akt and ERK, which normally phosphorylate Foxo3a at 

S253 and S294, respectively. These phosphorylation events create docking sites for 14-3-3 

proteins that bind Foxo3a and sequester it to the cytoplasm, thereby inhibiting its activity as a 

transcription factor. TIC10 inhibits Foxo3a phosphorylation, which also allows it to translocate to 

the nucleus where it binds to the TRAIL promoter at a previously reported FOXO binding site 

(Modur et al., 2002). This binding results in upregulated TRAIL gene transcription and translation 

that yields an elevated presence of TRAIL on the cell surface.  
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The dual inactivation of Akt and ERK  

Based on the proposed model for TIC10, we hypothesized that dual inhibition of the Akt and the 

MAPK pathways would cooperatively lead to the nuclear translocation of Foxo3a and TRAIL 

upregulation. To test this, we utilized A6730 and U0126 monoethanolate that are commercially 

available and previously described inhibitors of Akt1/2 (Desplat et al., 2008) and MEK (Favata et 

al., 1998), respectively (Figure 6.6A). We found that the combination of MEK and Akt inhibitors 

synergistically induced TRAIL at the mRNA and surface protein level (Figure 6.6B-C). 

Furthermore, the dual inactivation of Akt and ERK was sufficient to cooperatively induce Foxo3a-

dependent TRAIL upregulation as well as TRAIL-mediated cell death (Figure 6.6D-E). These 

novel observations were corroborated by siRNA experiments, revealing that ERK and Akt can be 

inhibited to cooperatively upregulate TRAIL gene transcription and protein (Figure 6.7). Together, 

these data indicate that TIC10 causes a dual inactivation of Akt and ERK, which leads to the 

nuclear translocation of Foxo3a that transcriptionally induces the TRAIL gene to potentiate cell 

death and potent anti-tumor effects in vivo. 

 Due to the involvement of Akt- and ERK-mediated phosphorylation of Foxo3a in the 

mechanism of TIC10, we next tested if other TICs affected Foxo3a in a similar manner to TIC10. 

Interestingly, TIC9 and TIC10 were the only TICs that affected both pAkt and pERK levels, which 

were accompanied by decreased levels of pS253 and pS294 Foxo3a (Fig. 6.8). TIC5 also 

decreased pAkt levels but this did not correlate with a decreased amount of pS253 Foxo3a, which 

is unexpected. The exclusive ability of TIC9 and TIC10 to affect Akt and ERK activity among 

TICs, particularly with respect to Foxo3a, is noteworthy given that these two TICs also exclusively 

induced cell death and surface TRAIL (Chapter 2). Together, these observations argue that 

Foxo3a is an attractive mechanism for inducing the TRAIL gene as it may result in increased 

TRAIL protein on the cell surface and cancer cell death.  
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Figure 6.6. Dual inhibition of Akt and ERK cooperatively induces TRAIL. (A) Structure of the 

utilized Akt inhibitor (U0126 monoethanolate, top panel) and the MEK inhibitor (A6730, bottom 

panel). (B) RT-qPCR and (C) Surface TRAIL induction in HCT116 p53-/- cells following incubation 

with 10 µM A6730 (Akt inh), U0126 monoethanolate (MEK inh), or both (48 hr, n=3). For Akt + 

MEK inh, P<.05 compared to all other conditions. (D) Surface TRAIL induction as in (C) with or 

without stable knockdown of Foxo3a (n=3). (E) Sub-G1 analysis of MDA-MB-231 with or without 

TRAIL knockdown by shRNA following incubation with 10 µM Akt inh, MEK inh, or both for 48 hr 

(n=3). Error bars indicate s.d. of replicates. *P < 0.05 between the indicated condition and control 

unless otherwise indicated. 
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Figure 6.7. Dual knockdown of Akt and ERK cooperatively induces TRAIL. (A) RT-qPCR 

analysis of TRAIL mRNA levels following ERK or Akt knockdown by siRNA in HCT116 p53-/- cells 

(48 hr, n=3). (B) Confirmation of Akt and ERK knockdown by Western blot analysis. (C) Surface 

TRAIL induction following transient knockdown of Akt and/or ERK in HCT116 cells at 48 hr post-

knockdown (n=3). For siERK and siAkt condition, P<.05 compared to all other conditions. *P < 

0.05 between the indicated condition and control. 
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Figure 6.8. TIC9 and TIC10 decrease Akt- and ERK-mediated phosphorylation of Foxo3a. 

Western blot analysis of HCT116 p53-/- cells treated with TICs (5 µM, 60 hr).  

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

127 

6.5  Discussion  

The effects of TIC10 specifically on Foxo3a rather than other family members suggested that 

TIC10 was likely affecting a unique regulator of Foxo3a. We first tested the possibility that TIC10 

was affecting IKK, as Foxo3a contains a IKK phosphorylation site at serine 644, which is not 

possessed by anything other FOXO family member (Hu et al., 2004b). However, we did not find 

any changes in IKK activity following TIC10 treatment as measured by phosphorylation of its 

substrate IκB and subsequent NFκB subcellular localization, which is sequestered to the 

cytoplasm when IKK is active (Hoffmann et al., 2002). Next, we tested the possibility of ERK 

involvement since ERK has been described to specifically regulate Foxo3a (Yang et al., 2008a; 

Yang et al., 2008b), which was indeed involved. Interestingly, we observed a striking decrease in 

pERK levels and phosphorylation levels of Foxo3a at a previously described phosphorylation site 

but did not observe any striking changes in total Foxo3a protein levels. However, a slightly lower 

level of total Foxo3a was noted in the MDA-MB-468 human breast cancer cell line. The possibility 

of TIC10-induced degradation of Foxo3a should be explored in future studies as ERK has been 

reported to causes ubiquitin-dependent degradation of Foxo3a through E3 ligases that involve 

Skp2 (Yang et al., 2008a; Yang et al., 2008b). The lack of degradation could be a result of 

negative regulation of Skp2 expression by Foxo3a that has been previously reported (Wu et al., 

2012) and was evident in the TIC10-induced changes determined during expression profiling.  

Akt is a potent regulator of Foxo3a and contains 3 conserved phosphorylation sites 

among FOXOs that are critical for 14-3-3-mediated shuttling between the cytoplasm and the 

nucleus (Biggs et al., 1999; Brunet et al., 1999; Kops et al., 1999; Nakae et al., 1999). We 

therefore tested the affect of TIC10 on Akt activity due to its intimate regulation of FOXOs. We 

found that TIC10 indeed reduced Akt phosphorylation along with its activity as judged by pGSK3B 

and pS294 Foxo3a. It has been suggested that the inhibition of Akt is completely required for the 

nuclear translocation of FOXOs. For TIC10, it is possible that Akt inhibition functions as a 

necessary but not sufficient aspect of activating Foxo3a and that concomitant ERK inhibition 

surpasses the threshold necessary to drive the nuclear translocation of Foxo3a and could be 

responsible for Foxo3a specificity over other family members.  
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 We found that the kinetics of TIC10-induced Akt, ERK, and Foxo3a activation coincided 

with the effects of TIC10 beginning at 48 hours. While these events are congruous with each 

other, the kinetics of TIC10-induced TRAIL seems to differ in vivo. As opposed to 48 hours in 

vitro, our previous experiments with serum TRAIL induced by intravenous TIC10 in mice 

demonstrated TRAIL elevation as soon as 8 hours following treatment. One consideration is that 

these biological systems are very different: the in vitro setting is human cancer cells in cell culture 

whereas the in vivo setting is normal mouse cells from virtually any tissue origin in a physiological 

setting. Nevertheless, it is very likely that there are factors present in vivo but not in vitro that 

expedite the response to TIC10. The possibility that TIC10 requires metabolism into an active 

compound is a possible explanation and is being explored in future studies.  

 Due to the involvement of Akt in the mechanism of TIC10 and its well-described 

regulation of Foxo3a, we determined the effect of Akt overactivation on TIC10 activity. We found 

that Akt overactivation through overexpression of myristoylated Akt was sufficient to reverse the 

TIC10-driven Foxo3a nuclear translocation and subsequent TRAIL-induction and tumor cell 

death. The identification of this pathway as a marker of sensitivity has implications for its use in 

future clinical trials with TIC10. This observation is in accordance with our in silico analysis that 

revealed elevated GPCR signaling in TIC10-resistant cell lines, as GPCR signaling intimately 

involves the MAPK and Akt signaling pathways. Future studies are exploring the prevalence of 

Akt overactivation in evolved TIC10-resistant clones in addition to the MAPK signaling pathway 

among others.  

 Based on the affects of TIC10 on both Akt and ERK, we tested the ability of Akt and 

MAPK pathway inhibitors to regulate Foxo3a and TRAIL expression alone and in combination. 

Interestingly, the combination of Akt and MEK inhibitors cooperatively induced Foxo3a-dependent 

TRAIL and synergistically induced TRAIL-mediated cell death. With both the siRNA and 

pharmacological inhibitors, the combination of Akt and ERK inhibition cooperatively upregulated 

TRAIL. These data suggest that TRAIL is an essential proapoptotic effector of Foxo3a, which is 

uniquely and cooperatively regulated by Akt and ERK. These observations provide a novel 

molecular explanation for recent reports of synergistic activity with dual inhibition of the PI3K/Akt 
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and MAPK (Ebi et al., 2011) and is also in line with a recent clinical observation that highlighted 

Foxo3a-dependent TRAIL as the critical axis mediating chronic HIV infection-induced cell death 

of memory B cells (van Grevenynghe et al., 2011). These data also argue for the combination of 

approved antitumor agents that target these two pathways indirectly may recruit Foxo3a/TRAIL-

dependent activity in addition to monoagent efficacy.  

 The observations that TIC9 and TIC10 uniquely affect Akt- and ERK-mediated 

phosphorylation of Foxo3a is particularly interesting, given their unique ability to induce TRAIL 

localized to the cell surface and their potent ability to induce cancer cell death. While the two 

molecules are very diverse in structure and likely differ in other effects on cell signaling, this 

common effect suggests that Foxo3a may be an attractive transcriptional mechanism for inducing 

the TRAIL gene as an antitumor strategy and also that perhaps Foxo3a induces a unique isoform 

of TRAIL that remains localization to the cell surface. Since breflate is the prodrug of a canonical 

ER stressor, future studies should examine the role of TRAIL as well as Foxo3a activation in the 

proapoptotic response to ER stress.  
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CHAPTER 7 

CONCLUSIONS
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7.1 Summary of Results 

TIC10 is a small molecule that was identified in a high throughput screen with the NCI Diversity 

Set II library of compounds to identify p53-independent inducers of the human TRAIL gene using 

a luciferase reporter gene under transcriptional control of part of the TRAIL gene promoter, which 

excludes the p53 binding site that we previously identified (Kuribayashi et al., 2008). TIC10 

induces TRAIL gene transcription in a p53-independent manner and TRAIL-mediated apoptosis. 

In addition to impressive efficacy in numerous xenografts, this therapeutic strategy results in 

improved drug properties compared to recombinant TRAIL such as delivery to the brain, greatly 

superior stability, temporally sustained induction of TRAIL for days beyond its normal half-life of 

<30 minutes, and no evidence of toxicity by numerous studies in various mouse models. TIC10 

also prolongs the survival of transgenic mice that spontaneously develop myc-driven lymphoma 

or mice harboring intracranial human glioblastoma tumors by weeks.  

TIC10 induces the TRAIL gene through Foxo3a by inactivating the prosurvival kinases 

Akt and ERK that are previously described upstream regulators that directly phosphorylate 

Foxo3a at Ser 253 and Ser 294, respectively. As Foxo3a is no longer phosphorylated, it 

translocates to the nucleus where it binds directly to the TRAIL promoter and upregulates its 

transcription. We assayed for other FOXO family members and found that TIC10 is affecting only 

Foxo3a and not other family members such as Foxo1, which has been targeted by small 

molecules (Kau et al., 2003). Accordingly, the dual inhibition of the Akt and MAPK pathways by 

the combination of other small molecules targeting Akt and MEK cooperatively induced Foxo3a-

dependent TRAIL upregulation and TRAIL-mediated cell death. These findings were corroborated 

by siRNA experiments and highlight Akt and ERK as key regulators of Foxo3a that may be 

utilized as a potent apoptosis-inducing strategy.  

These findings also suggest that the combination of MAPK and PI3K/Akt pathway 

targeted agents may be therapeutically advantageous by uniquely inducing the potent TRAIL-

mediated cell death pathway involved in innate tumor suppression. These are very novel insights 

demonstrating the convergence of key kinases to regulate a transcription factor, Foxo3a and not 

Foxo1, leading to critical induction of a pro-apoptotic and tumor suppressing secreted factor, 
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TRAIL, which is required for the observed anti-tumor effects of TIC10. Our observations suggest 

that TRAIL is a unique effector target gene of Foxo3a that confers its proapoptotic effects in 

response to TIC10, which is reminiscent of p21WAF1 being a unique effector target of p53 that 

confers cell cycle arrest in response to DNA damage (El-Deiry et al., 1993).  

 It is important to note that neither the specific pharmacological induction of the TRAIL 

gene by Foxo3a nor the nuclear translocation of Foxo3a has been specifically targeted as a 

therapeutic strategy to combat cancer. Additionally, this mechanism has novel implications that 

extend beyond TIC10, i.e. underscoring the cooperative regulation of Foxo3a by Akt and ERK 

and supporting the combination of Akt and ERK inhibitors to gain Foxo3a- and TRAIL-mediated 

therapeutic effects. However TIC10 provides these properties in a single small molecule along 

with safety in preclinical models. The delivery of TRAIL-based therapies to the brain is a problem 

that is widely recognized as a limitation by the field and has resulted in several preclinical efforts 

to deliver TRAIL by adenovirus or mesenchymal stems cells overexpressing TRAIL on their cell 

surface (Jeong et al., 2009; Kim et al., 2008). We find that serum TRAIL is elevated over a period 

of days following a single dose of TIC10, which is in stark contrast to the poor pharmacokinetics 

of recombinant TRAIL. We also found that TIC10 exhibits thermal stability unlike TRAIL, which is 

important for shelf-life and activity in vivo. In summary, TIC10 is a potent antitumor agent that 

requires Foxo3a and TRAIL and improves the properties of recombinant TRAIL to yield superior 

efficacy and spectrum of activity.  

Our data shows that the antitumor effects of TIC10 are mediated through TRAIL and 

Foxo3a as indicated by stable knockdown in vitro and xenograft experiments. TIC10 is a first-in-

class anti-cancer therapy that provides an excellent opportunity for modulation of host anti-tumor 

responses and the pharmacokinetic properties of an endogenous antitumor protein. Moreover, 

the pharmacological induction of TRAIL in the brain demonstrates a novel therapeutic approach 

in brain malignancies otherwise refractory to current therapies. This provides an alternative 

solution for the general limitation of protein delivery by stimulating TRAIL production within the 

tumor microenvironment. TIC10 demonstrates a novel and effective cancer therapeutic strategy 

that utilizes both normal and tumor cells to produce an anti-tumor agent via conserved signaling 
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pathways that results in a therapeutic response. The modulation of pharmacokinetic properties of 

endogenous TRAIL as a tumor suppressive agent by a small molecule such as TIC10 suggests 

that exploration of pharmacological induction/pharmacokinetic tuning of other endogenous anti-

tumor proteins is feasible and warranted. The molecular mechanism of TIC10 suggests that the 

anti-tumor effects of Foxo3a and TRAIL gene can be harnessed through the dual inhibition of Akt 

and ERK, which should be explored with such targeted agents in clinical development.  

TIC10 possesses an excellent broad-spectrum activity profile that does not rely 

exclusively on commonly altered molecules in cancer such as EGFR, Her2, KRAS, p53, or PTEN. 

This is in agreement with a previous study describing the utility of Foxo3a activation as an 

anticancer mechanism for targeting cancer cells resistant to therapies that inhibit upstream 

regulators of MAPK signaling (Yang et al., 2010). The elucidation of the mechanism of TIC10 

yields important information for the clinical translation of this molecule as it allows for the 

identification of potential resistance mechanisms such as over-activated Akt, which we 

demonstrate directly, and offers phospho-ERK, phospho-Akt, Foxo3a localization, and surface 

and serum TRAIL as correlative biomarkers in early phase clinical trials. 

Together, these findings demonstrate that TIC10 is a safe and orally active anti-tumor 

agent that has potent cancer-specific cytotoxicity that results from sustained stimulation of the 

endogenous TRAIL tumor suppressor in normal and tumor tissues, including the brain. TIC10-

induced TRAIL is dependent on Foxo3a, which also upregulates TRAIL death receptor DR5 

among other targets, allowing for sensitization of some TRAIL-resistant tumor cells. Our 

observations support that harnessing Foxo3a is a powerful antitumor strategy that is mediated by 

TRAIL and may be achieved by dual inhibition of Akt and ERK as exemplified by the small 

molecule TIC10. Interestingly, the induction of TRAIL caused by TIC10 is sustained in tumor, 

stromal, and host cells and in vitro evidence suggests that these normal host cells may contribute 

to TIC10-induced cancer cell death. Due to the promising preclinical safety and efficacy profile of 

TIC10 demonstrated herein, an early phase clinical trial has been planned to evaluate the safety 

and efficacy of TIC10 in patients with lymphoma, brain, breast, or lung cancer. The molecular 



www.manaraa.com

134 

mechanisms and clinical exploitation of the synergistic combination of TIC10 with taxanes will 

also be examined in future clinical development.  

 

7.2 Future Directions  

Overview  

TIC10 is an extremely potent antitumor agent that requires Foxo3a and TRAIL upregulation for its 

activity. Clinical translation of the molecule is being pursued due to the highly promising efficacy 

and safety profile of the molecule. Complete elucidation of the mechanism of action of TIC10 will 

greatly facilitate the translation of this molecule, more clearly delineate a potent antitumor 

strategy, and potentially yield novel drug targets. Our preliminary data suggest that TIC10 inhibits 

the PI3K/Akt and MAPK pathways and that these pathways cooperatively regulate the TRAIL 

gene through Akt- and ERK-mediated phosphorylation of Foxo3a. However, future studies should 

explicitly evaluate their individual and cooperative contribution to the overall antitumor effects of 

TIC10 and determine if any additional modifications to Foxo3a occur in response to TIC10. Lastly, 

the mechanism and target of TIC10 should be validated in vivo as part of the translation of TIC10. 

These future studies will facilitate the clinical translation of the first-in-class molecule TIC10 by 

defining its mechanism of action and providing a better understanding of FOXO regulation of the 

TRAIL gene. 

 

Understanding the regulation and activity of Foxo3a  

As previously outlined, the activity of FOXO family members can be controlled by a number of 

events with some events being unique to particular members. Future studies should define 

differential regulation of the TRAIL gene by FOXO family members to better understand FOXO 

biology and the relative suitability of Foxo3a as a drug target compared to other FOXOs. TRAIL is 

a potent and selective tumor suppressor gene that serves as an attractive drug target for cancer 

treatment as exemplified by TIC10. It is important that we understand if certain FOXO family 

members may more prominently regulate the TRAIL gene promoter so that the family member 

can be preferentially targeted. Additionally, the coregulation of FOXO binding sites by different 
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FOXO family members is unclear. For instance, does upregulating Foxo1 and Foxo3a 

simultaneously result in a cooperative, antagonistic, or similar effect compared to upregulating 

just one? Do cofactors influence these relationships? Can these relationships be explained by in 

vitro binding or does the genomic context influence the relationship? The answers to these 

questions should be obtained in future studies as this will yield essential information regarding 

how FOXO family members regulate the TRAIL gene in comparison or in concert and provide 

information on how to best therapeutically harness the TRAIL gene using FOXO. 

The localization of Foxo3a has been linked to prognosis in select malignancies. High 

expression levels of Foxo3a has been linked to a better prognosis in hepatocellular carcinoma 

and ovarian cancer (Fei et al., 2009; Lu et al., 2009). High phospho-Foxo3a has been linked to a 

poorer outcome in AML and ovarian cancer (Kornblau et al., 2010; Lu et al., 2011). However, 

none of these studies have examined Foxo3a expression levels, phosphorylation levels, or 

localization in colon cancer disease progression. Furthermore, most of the previous studies only 

noted the localization of Foxo3a rather than its activity. Simultaneously evaluating the post-

translational modifications, localization, and expression of Foxo3a in primary colon cancer 

specimens will have important implications for the biology of Foxo3a in disease progression and 

identify prevalent Foxo3a modifications in patient tumors that should be evaluated for there 

effects on therapeutic sensitivity. 

 

TRAIL and Late Effects of Gamma Radiation  

The majority of cancer patients receive radiation therapy (Chua et al., 2004; Ringborg et al., 

2003) such as gamma radiation (GR), as it is noninvasive and controlled in temporal and spatial 

dimensions. GR is dose-limited by toxicity issues that manifests as early effects such as skin 

irritation, and mucositis. However, late effects also surface including fibrosis, atrophy, vascular 

damage, and neural damage which persist indefinitely and intensify (Bentzen et al., 1989). While 

still under investigation, radiation-induced fibrogenesis has generally been attributed to cytokines, 

endothelial cell damage, and reactive oxygen species (ROS) (Bentzen, 2006). One such cytokine 

is TGFβ, which possesses roles in wound healing (Leask and Abraham, 2004), tumor 
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suppression and progression (Dumont and Arteaga, 2003; Siegel and Massague, 2003), 

inhibition of endothelial cell proliferation (Reiss, 1997), and promotion of invasion and metastasis 

in breast cancer (Reiss, 1997; Siegel et al., 2003). GR causes immediate activation and secretion 

of TGFβ from damaged endothelial cells (Ehrhart et al., 1997; Ewan et al., 2002). Activation of 

TGFβ triggers the SMAD-pathway signaling, resulting in transcription of target genes which direct 

fibroblast differentiation and tissue remodeling (Bayreuther et al., 1988; Feng and Derynck, 2005; 

Herskind et al., 1998; Herskind and Rodemann, 2000; Martin et al., 1974; Rodemann et al., 

1991). In direct support, SMAD3-/- mice have reduced fibrogenesis and epithelial-mesenchymal 

transitions (EMT) (Roberts et al.), a process involved in fibrogenesis (Kalluri and Neilson, 2003). 

Genetic correlations of SNPs with radio-responsiveness have failed (Andreassen, 2005), 

nevertheless there have been attempts to combat these late effects. Amifostine is a 

cytoprotective compound used in head and neck cancer (Brizel et al., 2000) but itself has severe 

side effects (Rades et al., 2004) and preclinical data suggests that it possesses tumor-protective 

effects (Lindegaard and Grau, 2000). Small-molecule TGFβ inhibitors such as SM305 (Ishida et 

al., 2006) and halofuginone (Xavier et al., 2004) are in preclinical development but TGFβ is a 

risky target due to its suppressor and promoter dual role in cancer (Iyer et al., 2005; Reiss, 1997; 

Wakefield and Roberts, 2002). Clearly, a molecular understanding of the late effects of GR is 

necessary for development of more effective therapies.  

Novel findings from our lab suggest a role for the TRAIL pathway in these late effects as 

TRAIL-R-/- mice develop chronic inflammation and fibrosis sooner and more severe than wild type 

littermates (Finnberg et al., 2008). Based on these findings, we hypothesize that late effects of 

GR are due, at least in part due to diminished TRAIL-signaling and administration of small 

molecule upregulators of TRAIL will ameliorate the late effects of GR. Future studies should test 

this hypothesis with both TRAIL and TIC10, which causes a sustained elevation of TRAI levels for 

days.   
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Identifying the direct binding target of TIC10 

While the mechanism of TRAIL gene induction by the small molecule TIC10 has been elucidated, 

the direct binding target of TIC10 has not been identified. We are undertaking several approaches 

as future directions to identify the binding target for TIC10: (1) deductive reasoning from upstream 

cell signaling changes, (2) gene expression profiling of TIC10 response in wild-type versus 

TIC10-resistant isogenic cell lines, (3) in vitro kinase activity assays against the kinome, and (4) 

mass spectrometry-mediated identification of proteins bound to bead-conjugated TIC10.  The 

mechanism of TRAIL gene induction by TIC10 involves the dual inactivation of Akt and ERK that 

cooperatively activate Foxo3a, which translocates to the nucleus where it upregulates TRAIL 

gene transcription. We looked further upstream of ERK in the MAPK pathway, which is 

compromised of the Ras/Raf/MEK/ERK axis, and found that phospho-MEK expression was also 

being ablated in response to TIC10 to a similar extent seen with phospho-ERK (Figure 7.1A). 

This phosphorylation event on MEK is mediated by Raf, suggesting that Raf activity was being 

inhibited by TIC10.  

The activity spectrum of TIC10 is very broad and TIC10-induced cytotoxicity and TRAIL 

production has been demonstrated in cells that lack EGFR (SW620) and HER2 (MDA-MB-231). 

Furthermore, TIC10 did not affect total- or phospho-Her-2 expression levels (Figure 7.1A). This 

suggests that EGFR and HER2 may not be involved in the mechanism of action of TIC10 or at 

least, do not exclusively mediate the effects of TIC10. Next, we tested Ras activation following 

TIC10 treatment using a functional assay that precipitates active Ras protein using Raf-1-

conjugated beads followed by immunoblotting for Ras. A time course experiment found no 

significant differences in active Ras levels between TIC10- and DMSO-treated cancer cells 

(Figure 7.1B). Together, these data suggest that TIC10 decreases Raf activity to inhibit the MAPK 

pathway.  

Current studies are focusing on the mechanism of Raf inhibition that may involve 

decreased Raf protein expression, increased Raf protein degradation, or negative regulation by 

RKIP. RKIP activation is a promising candidate effector mechanism for TIC10 as this protein 

inhibits both the MAPK and PI3K/Akt pathways (Lin et al., 2010). In any case, Raf inactivation by 
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TIC10 is still a late event and further upstream effects must be elucidated for TIC10 target 

identification. As a parallel and unbiased approach, we have evolved RKO human cancer cell 

lines that are completely resistant to the cytotoxic effects of TIC10 even after withdrawal of the 

drug (Figure 7.2A). Interestingly, these cells have completely silenced TRAIL expression on their 

cell surface and no longer respond to TIC10 in terms of TRAIL production, Akt or ERK inhibition, 

or Foxo3a activation (Figure 7.2B-C). As an approach to target identification, we will perform 

gene expression profiling at early time points (~8 hours) in response to TIC10 and compare the 

wild-type versus TIC10-resistant isogenic cancer cells. Genes with TIC10-induced changes that 

are significantly different between the wild-type and TIC10-resistant cell lines will be identified. 

Ingenuity Pathway Analysis will be employed to determine common signaling networks and 

generate potential binding target candidates. RNAi and/or overexpression experiments will 

evaluate candidate binding targets of TIC10. Promising candidates will be evaluated for direct 

binding using NMR chemical shift perturbation and/or HPLC assays as appropriate.  

Should these two approaches fail, we will explore two other approaches as alternatives. 

The in vitro kinase activity approach is expensive and assumes that the direct binding target is a 

kinase and that the molecule does not require modifications inside the cell for activity. 

Conjugation of small molecules to beads requires chemical moieties that are amenable to 

chemistry with a given chemical linker attached to the bead. While this is available on TIC10, this 

process will require chemistry expertise and will alter the chemical structure of the molecule, 

change its enthalpic and entropic energies, and may change its ability to interact with natural 

binding targets. While these approaches have significant limitations, they have proven useful in 

target identification for some small molecules and will be employed if necessary.  
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Figure 7.1. TIC10 does not affect Her2 or Ras activation. (A) Western blot analysis of HCT116 

p53-/- cells treated with TIC10 (0, 2.5, or 5µM) for 72 hrs. (B) Immunoblot for Ras following precipitation with 

Raf-1-conjugated beads. HCT116 p53-/- cells were treated with TIC10 (5 uM) or DMSO for the indicated time 

period and processed according to the manufacturer’s protocols (STA-400-K, Cell Biolabs, Inc.). GDP and 

GTPyS are included as negative and positive controls, respectively.  
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Figure 7.2. TIC10-resistant clones have silenced TRAIL expression and do not inhibit Akt 

or ERK in response to TIC10. (A) Cell TiterGlo analysis on RKO cells at 72 hr post-treatment 

with TIC10 at indicated doses (n=3). Assay was performed 3 weeks following removal of TIC10 

selection for resistant cell lines. For evolution of TIC10-resistant clonal cell lines (TIC10-R1 and 

TIC10-R2), RKO cell were treated with 500 nM TIC10 for 1 week and the dose was doubled 

weekly until 16 uM. (B) Surface TRAIL analysis following a 72 hr treatment with TIC10 (10 uM) or 

DMSO (n=3). (C) Western blot analysis of RKO cells treated with TIC10 (10 uM) for 72 hrs. *P < 

0.05 between the indicated condition and control. 
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Translating TIC10 to the clinic  

Our studies with TIC10 reported herein have provided the foundation for rationalizing and 

designing a human clinical trial testing a new cancer treatment through preclinical studies that 

established efficacious and safe dosing schedules, efficacy profiling to identify target 

malignancies, identify correlative assay markers, and elucidated the mechanism of action for the 

potentially first-in-class small molecule. A phase I/II study with TIC10 in cancer patients has been 

planned. Based on our preclinical data, the patient population will include glioblastoma, NSCLC, 

breast cancer, lymphoma, head and neck, and colorectal cancer. The primary objectives of this 

study will be to determine safety, optimal dose, pharmacokinetics, pharmacodynamics, and 

efficacy of TIC10. Secondary endpoints will be analyzed by Kaplan Meier methods and include 

overall survival, objective response, disease control, time to response, duration of response, and 

statistically significant responses in correlative assays. 

 Our mechanistic studies have revealed several proteins that are intimately involved in the 

mechanism of TIC10. Our data strongly suggest that phospho–ERK, phospho–Akt, Foxo3a 

localization, phospho-Foxo3a, DR5, surface TRAIL, and serum TRAIL protein levels may serve 

as molecular markers of response in TIC10-treated cancer patients and will be incorporated in 

correlative assays in future clinical trials. Enrolled patients will include colorectal and breast 

cancer, have been approved by the FDA for prognostication based on circulating tumor cell 

(CTC) enumeration (Appendix 3). Pharmacodynamic response will be defined as a 20% elevation 

in serum TRAIL, 20% increase in lymphocyte DR5 or TRAIL expression, or a 20% decrease in 

phospho-ERK levels in CTCs. Disease will be monitored by CT or MRI scan/PET scans and 

efficacy will be evaluated by time to progression (TTP) and response rate according to Response 

Evaluation Criteria in Solid Tumors (RECIST). Based on preclinical data, we expect to achieve 

pharmacodynamic endpoints below the maximum tolerated dose.   
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Appendix 1 – Expression profiling of TIC10-induced changes 

Table A1.1 TIC10-induced changes that occur at 18 but not 48 hours. 

Symbol Fold change Direction of 
change Corrected p-value  

SLFN5 5.2536516 up 0.013630901 

C1orf24 4.767111 up 0.020882903 

LOC729779 4.317111 up 0.007861736 

ULBP1 3.863834 up 0.01914735 

FAM129A 3.8311636 up 0.015890285 

NRP1 3.7627487 up 0.0415099 

PSAT1 3.7295916 up 0.009730678 

LAMP3 3.5428753 up 0.015890285 

CARS 3.4032776 up 0.035969965 

SERPINB8 3.3323784 up 0.015136981 

LCN2 3.2839663 up 0.022725973 

BEX2 3.1873887 up 0.01736496 

SYTL1 3.028134 up 0.035387393 

ATF4 2.9628785 up 0.03377527 

SLC3A2 2.9154215 up 0.033348393 

GPR56 2.828719 up 0.032397754 

SMOX 2.7758727 up 0.035969965 

MAP1B 2.7032073 up 0.03377527 

ZCCHC12 2.5327935 down 0.031600256 

CARS 2.4839833 up 0.031037325 

SLC3A2 2.4613535 up 0.012894535 

LOC285216 2.419268 up 0.013630901 

SARS 2.4026952 up 0.004370419 

CYP4F3 2.3913798 up 0.046903133 

SLC7A1 2.372022 up 0.035969965 

CXorf45 2.3611965 up 0.0424862 

OR51B5 2.3410978 up 0.017769916 

OR51B5 2.3251212 up 0.03832007 

C9orf91 2.323258 up 0.03754234 

GPT2 2.322226 up 0.01914735 

WARS 2.3204963 up 0.015136981 

MTHFD2 2.3183424 up 0.018310567 

LOC650215 2.3182306 up 0.045011252 

MTHFD2 2.2629762 up 0.009730678 
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FTHL16 2.2629623 up 0.030300215 

IFI35 2.2365541 up 0.03377527 

C2orf18 2.2235944 up 0.023232972 

GADD45A 2.2223954 up 0.03377527 

AARS 2.203837 up 0.035969965 

KLHL29 2.2029133 up 0.0424862 

LETMD1 2.194489 up 0.04149641 

TACSTD2 2.1636503 up 0.047248807 

CCNB1IP1 2.1506143 up 0.02516231 

LOC644100 2.1153002 up 0.040577903 

TRIM25 2.1108935 up 0.046464972 
NCRNA0021
9 2.1059155 up 0.013630901 

AHNAK2 2.084259 up 0.04166845 

TIGA1 2.0792367 up 0.028295735 

GOT1 2.0616658 up 0.030248642 

WARS 2.035528 up 0.027487637 

YARS 2.025761 up 0.015890285 

NFE2L1 2.023078 up 0.04794338 

STK40 2.0103016 up 0.02055652 

CDC25A 2.0061474 down 0.04143007 

ANKRD41 1.9957383 down 0.013276912 

ABCC3 1.9893185 up 0.034122363 

TES 1.9855434 up 0.045349706 

CLIC4 1.9744818 up 0.04219793 

SMOX 1.9712912 up 0.010293334 

CLDN7 1.9673108 up 0.038438715 

LOC644877 1.9475921 down 0.017769916 

PRSS3 1.9405015 up 0.024025438 

SNHG8 1.933677 up 0.03295909 

PYCR1 1.9311128 up 0.043904882 

HMOX1 1.9302819 up 0.01736496 

CCNB1IP1 1.9219142 up 0.048921436 

ATF4 1.9183371 up 0.02516231 

TUFT1 1.9114358 up 0.0424862 

PGAM1 1.8919657 down 0.02516231 

MT1G 1.8550231 up 0.033348393 

PPM1M 1.853048 up 0.025818529 
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TP53I3 1.8434186 up 0.04794338 

CLIP4 1.8357545 up 0.02516231 

LARS 1.8327401 up 0.015136981 

LAMC2 1.8307914 up 0.02516231 

C6orf48 1.8263745 up 0.02516231 

SNORD30 1.8227549 down 0.03522341 

CALCOCO2 1.8179024 up 0.035969965 

LOC728188 1.8174123 down 0.02516231 

KCTD15 1.8155324 up 0.023033692 

ETV5 1.7755473 up 0.035969965 

LETMD1 1.7748973 up 0.023033692 

LRP3 1.7607368 down 0.03832007 

ATF5 1.7407991 up 0.015890285 

SLC16A5 1.7315388 up 0.035387393 

IDH1 1.7256097 up 0.046762653 

GRB10 1.7219803 up 0.03754234 

IARS 1.7086833 up 0.042942364 

ALDH2 1.7025706 up 0.04166845 

PITX1 1.7019013 down 0.047705967 

VPS28 1.6996351 up 0.045349706 

FLNB 1.6966534 up 0.011017979 

PSME3 1.694756 down 0.042370286 

C20orf127 1.690119 up 0.035387393 

TXNRD1 1.6883202 up 0.040577903 

TFRC 1.6775392 up 0.033348393 

SFRS2 1.6736805 down 0.031570848 

JOSD1 1.670766 up 0.018388763 

ETV5 1.6706791 up 0.023232972 

JAG2 1.6562698 down 0.04998421 

FLJ10986 1.654353 up 0.048788186 

MTO1 1.6475526 up 0.011017979 

YWHAE 1.6474224 down 0.03851196 

P2RX4 1.6406866 up 0.023232972 

NAP1L4 1.6232096 down 0.03377527 

LOC387825 1.6173114 up 0.03186376 

TACC2 1.6127528 up 0.043904882 
LOC1001331
63 1.5947231 down 0.02516231 
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RAG1AP1 1.5885754 up 0.039074127 

ZNF25 1.5853447 up 0.013276912 

ECGF1 1.5740145 up 0.03377527 

NCAPD3 1.573892 down 0.035969965 

HLA-G 1.5714598 up 0.01914735 

ZNF473 1.5704359 up 0.04852033 

C1orf41 1.5127012 down 0.039863512 

TOMM40 1.5104885 down 0.043260563 

FAM107B 1.5074275 up 0.04998421 

AHSA1 1.50516 down 0.035969965 

MT1A 1.4974539 up 0.018310567 

EIF2B1 1.493862 down 0.042965356 

HAX1 1.4836705 up 0.03377527 

MT2A 1.4782473 up 0.03832007 

C13orf15 1.4750918 down 0.0424862 

KIAA1324L 1.4750146 up 0.035969965 

EHBP1 1.47026 up 0.030091554 

KIAA0430 1.466113 up 0.02516231 

SNORA61 1.4616472 down 0.035969965 

PRPF38A 1.4600328 down 0.032736808 

HMBS 1.4593867 down 0.035387393 

RPA1 1.45915 down 0.048921436 

NOL12 1.458158 down 0.043904882 

MT1E 1.4551145 up 0.032736808 

AP1S1 1.4540619 down 0.03754234 
LOC1001305
61 1.4518129 down 0.038431063 

PARD6G 1.4499322 down 0.025818529 

TUBB6 1.4494025 down 0.046364475 

SFRS4 1.449192 down 0.040804602 

ZSWIM7 1.4460802 up 0.036312204 

TPD52L1 1.4301215 up 0.029162576 

ATP9A 1.4247177 up 0.02516231 

CIR1 1.4222693 up 0.0480779 

VDAC3 1.4192182 down 0.034097776 

DCTPP1 1.4172494 down 0.02055652 

NIT2 1.4153856 up 0.04622574 

C12orf76 1.413956 up 0.039074127 
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TIMM44 1.4129331 up 0.02516231 

HIATL1 1.4115709 down 0.042370286 

LOC653505 1.4115399 down 0.025818529 

LOC729086 1.4102656 down 0.045709208 

HEATR2 1.4101177 down 0.036609683 

SERINC3 1.4095489 up 0.04806973 

PGS1 1.4080536 down 0.03377527 

RABAC1 1.40511 up 0.02516231 

EDEM2 1.4044122 up 0.04143007 

LOC729500 1.4039483 up 0.035969965 

RFXANK 1.4008156 up 0.04852033 

CCNE1 1.3986037 down 0.03978613 

KIAA0355 1.3940547 up 0.03377527 

TMEM167B 1.3928344 up 0.044718616 

OCRL 1.390933 up 0.013630901 

FLJ12684 1.3903908 down 0.03377527 

LOC643949 1.3869902 up 0.04714453 

CCT7 1.3847481 down 0.046364475 

ZDHHC8 1.3839697 down 0.035969965 

CCDC84 1.379626 down 0.03691505 

C9orf6 1.378823 up 0.036143113 

LOC391019 1.3775201 up 0.029162576 

SLBP 1.3741986 down 0.02516231 

C1orf122 1.3701819 up 0.04166845 

HLA-E 1.3694867 up 0.0415099 

FKBP9L 1.368465 up 0.039863512 

CAMK2G 1.3684158 down 0.043904882 

NUP85 1.3650339 down 0.027487637 

BLVRB 1.3619043 up 0.035969965 

LOC647349 1.356989 up 0.02554246 

SLC25A42 1.355689 down 0.039582886 

MLH1 1.3553423 up 0.046464972 

RPL29 1.3552064 down 0.045110192 

CTNNA1 1.3544421 up 0.025818529 

BRE 1.3544145 up 0.043260563 

ZFP90 1.3539084 up 0.02516231 

C20orf111 1.350331 up 0.035969965 

KRT18P13 1.3498448 up 0.040804602 
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LOC652864 1.348653 down 0.046364475 

LOC642282 1.3457245 up 0.046903133 

PDCD4 1.3455595 up 0.042370286 

DBNDD1 1.3407319 down 0.04582269 

GARNL4 1.3327382 up 0.02516231 

ACN9 1.326853 down 0.046364475 

ITGB1 1.3260574 up 0.049887963 

C14orf173 1.3255491 down 0.047705967 

ERN1 1.3244102 up 0.0424862 

CHD1L 1.3195786 up 0.039863512 

CSE1L 1.3186004 down 0.040804602 

PIAS1 1.3145103 down 0.017720023 

GEMIN6 1.2970588 down 0.04714453 

SERPINE2 1.2951967 up 0.04219793 

C1orf149 1.2934092 up 0.02516231 

BSPRY 1.2891803 up 0.04166845 

TNRC6B 1.287398 down 0.02516231 

FBXL20 1.2782476 up 0.043904882 

CNN2 1.2772377 down 0.045620862 

TMEM131 1.2741445 up 0.034981884 

NDUFS3 1.2740364 down 0.049490392 

F12 1.2736617 down 0.043904882 

UBAP1 1.2734244 up 0.039582886 

KRT18 1.2674093 up 0.01914735 

C16orf72 1.2638713 up 0.04705363 

FOXRED1 1.2572327 down 0.040804602 

MKI67IP 1.247975 up 0.035969965 

SS18L2 1.2477217 down 0.043904882 

C10orf116 1.2438484 up 0.04143007 

STMN1 1.2424924 down 0.04166845 

CCNH 1.2417604 up 0.040577903 

CALHM2 1.2293093 up 0.01914735 

C8orf33 1.2162672 up 0.01914735 
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Table A1.2 TIC10-induced changes that occur at 18 and 48 hours. 

Symbol 
Fold 

change 
(18 hr) 

Direction 
of 

change 
(18 hr) 

Corrected 
p-value 
(18 hr) 

Fold 
change 
(48 hr) 

Direction 
of change 

(48 hr) 

Corrected p-
value (48 hr) 

SESN2 11.819792 up 0.0230336
92 5.85784 up 0.019069718 

PCK2 9.12146 up 0.0151369
81 4.832417 up 0.014007526 

BEGAIN 8.528189 up 0.0194919
11 6.289588 up 0.0437373 

IL20RB 7.5523267 up 0.0132769
12 7.994223 up 0.008422944 

DDIT3 7.410269 up 0.0110179
79 6.3575916 up 0.046669953 

UPP1 7.4030914 up 0.0191473
5 15.519281 up 0.006875412 

PCK2 7.2715816 up 0.0097306
78 3.3627062 up 0.024277335 

MIR1974 6.9898806 up 0.0097306
78 14.479351 up 0.017613085 

TRIB3 5.6356206 up 0.0205565
2 5.0162215 up 0.009082349 

TSC22D3 5.4871993 up 0.0136309
01 1.7840397 up 0.04959872 

SLC6A9 5.3645306 up 0.0110179
79 6.124898 up 0.013490164 

ASNS 5.0690565 up 0.0167031
21 5.9591856 up 0.010108237 

ASNS 4.8894877 up 0.0432605
63 6.38537 up 0.02737664 

OR2A9P 4.389211 up 0.0347636
64 6.166382 up 0.009282365 

TSC22D3 4.1785417 up 0.0359699
65 2.2149007 up 0.03343619 

SUNC1 4.0198045 up 0.0110179
79 7.436066 up 0.009637909 

GDF15 3.8177516 up 0.0158902
85 2.7162862 up 0.006875412 

ATF3 3.7389376 up 0.0136309
01 4.5627646 up 0.016343728 

SERPINE
1 3.5904937 up 0.0375423

4 4.3190026 up 0.046277195 

DDIT4 3.556292 up 0.0043704
19 5.3310637 up 0.010494264 

RBCK1 3.3280146 up 0.0137669
17 4.5174375 up 0.009637909 

ADM2 3.3132143 up 0.0462257
4 3.2425497 up 0.006875412 

FGF19 3.296934 up 0.0348064
04 4.52479 up 0.029269956 

SLC3A2 3.296031 up 0.0258185 2.1448486 up 0.02245333 
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LAMB3 2.96298 up 0.0191473
5 6.7913866 up 0.009082349 

SERPINB
8 2.9558315 up 0.0132769

12 3.1991768 up 0.048220243 

MYB 2.954644 down 0.0312813
4 9.934199 down 0.028245559 

MOCOS 2.8860984 up 0.0110179
79 2.904689 up 0.017037364 

LAT2 2.8307748 up 0.0453497
06 5.394362 up 0.019069718 

TNFRSF
10B 2.8061705 up 0.0337752

7 2.9231594 up 0.04085896 

GPR56 2.7960327 up 0.0173649
6 1.6894411 up 0.012055384 

MAP1LC
3B 2.7872233 up 0.0256566

48 2.5377803 up 0.010975787 

PPP1R15
A 2.7776794 up 0.0124213

62 3.3632076 up 0.02000229 

LOC6441
00 2.7344277 up 0.0208829

03 1.5932164 up 0.04671367 

MXD1 2.7020228 up 0.0268950
31 6.237349 up 0.041504502 

STC2 2.6722522 up 0.0260177
85 3.8782978 up 0.019293752 

BTG1 2.5891666 up 0.0415099 3.2664702 up 0.031236254 

IFFO1 2.5648751 up 0.0136309
01 5.4991302 up 0.028620897 

GADD45
A 2.521268 up 0.0020158

49 2.915081 up 0.009637909 

CEBPG 2.4901845 up 0.0181588
75 2.8173778 up 0.039217066 

IRF2BP2 2.387892 up 0.0458226
9 2.7528107 up 0.028689677 

LOC3898
16 2.3747094 down 0.0340977

76 7.4285874 down 0.008422944 

MGC399
00 2.3426023 down 0.0359699

65 46.10521 down 0.009082349 

WDR45 2.334724 up 0.0020158
49 3.0526786 up 0.037460446 

HERPUD
1 2.3304486 up 0.0151369

81 2.8943672 up 0.021350387 

MGC399
00 2.3293552 down 0.0191473

5 27.370665 down 0.010320948 

KCNG1 2.3217037 up 0.0183105
67 2.192606 up 0.021902733 

GADD45
B 2.3041892 up 0.0167395

96 2.4565637 up 0.013956664 

DUSP5 2.3010147 up 0.0110179
79 5.689019 up 0.02172359 

HERPUD
1 2.2780652 up 0.0353873

93 3.3228686 up 0.029931428 
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MCM4 2.2435672 down 0.0020158
49 4.560677 down 0.009082349 

CYP4F11 2.2395053 up 0.0043704
19 2.5944374 up 0.013018658 

TMSB15
A 2.2045834 down 0.0230336

92 33.989494 down 0.009082349 

HBEGF 2.1940482 up 0.0427416 3.5346715 up 0.031252235 

GARS 2.1923409 up 0.0408044
27 2.1795294 up 0.037335012 

FEN1 2.1898549 down 0.0415099 7.0433836 down 0.01970352 

SRXN1 2.1729677 up 0.0128945
35 2.9000022 up 0.04029018 

AXIN2 2.171488 down 0.0191473
5 5.7443695 down 0.010494264 

ARHGEF
2 2.1660032 up 0.0097306

78 3.0829825 up 0.021209413 

GINS2 2.153951 down 0.0337752
7 9.536368 down 0.011621549 

JUN 2.1348608 up 0.0251623
1 2.9465241 up 0.03648406 

FTH1 2.0999665 up 0.0158902
85 2.205528 up 0.045399822 

PABPC1
L 2.0856695 up 0.0359699

65 4.142922 up 0.017658098 

TUBA4A 2.0830116 down 0.0463644
75 2.4606605 down 0.049851265 

AXL 2.076982 up 0.0479433
8 3.9583647 up 0.012673016 

SERPINB
1 2.0723882 up 0.0337752

7 2.8195195 up 0.018760737 

PLAU 2.0501742 up 0.0201493
91 3.6245394 up 0.02330884 

CACYBP 2.0180218 down 0.0359699
65 4.067813 down 0.008422944 

CDCP1 2.0178082 up 0.0205565
2 2.5135884 up 0.020999888 

C6orf48 1.9998101 up 0.0183625
69 3.0774543 up 0.044947993 

DDX46 1.9714651 down 0.0423702
86 5.5628347 down 0.020818258 

HSPA1B 1.9080081 down 0.0432605
63 4.0661254 down 0.009082349 

KCNS3 1.9051995 down 0.0421979
3 4.533024 down 0.01739141 

FHL2 1.9047492 up 0.0300915
54 3.5383282 up 0.015292713 

CHRNA5 1.8925257 down 0.0268950
31 5.2328634 down 0.010320948 

SHPK 1.8831948 down 0.0205565
2 4.5155196 down 0.018237824 

JPH2 1.87579 up 0.0413352
18 3.1295772 up 0.035261743 
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SDF2L1 1.8671106 down 0.0251623
1 1.9737438 down 0.043860547 

NFIL3 1.8632436 up 0.0453111
8 2.9946795 up 0.023780325 

DHCR24 1.8471593 down 0.0251623
1 3.794173 down 0.01739141 

ELL2 1.8428729 up 0.0479918
98 2.0854042 up 0.02484479 

GOLT1A 1.8420486 up 0.0110179
79 3.6333747 up 0.011907834 

LETMD1 1.8409784 up 0.0291625
76 3.0706787 up 0.044628672 

BRI3BP 1.8380828 down 0.0359699
65 2.954526 down 0.03469577 

LOC6448
77 1.8343229 down 0.0447186

16 5.3968477 down 0.013536799 

MTE 1.8257971 up 0.0337293
1 2.5802236 up 0.029269956 

WIPI1 1.8093309 up 0.0205565
2 2.1866047 up 0.019069718 

PTPRM 1.7988014 up 0.0342698
5 2.959382 up 0.022564188 

SH3KBP
1 1.7915754 up 0.0293450

37 2.2837772 up 0.049368307 

FOXRED
2 1.7697657 down 0.0043704

19 4.7976832 down 0.023234107 

RBM35A 1.7588271 up 0.0258185
29 2.2318382 up 0.028689677 

KRT15 1.7535143 up 0.0158902
85 2.9456031 up 0.027835343 

LHX2 1.7372339 down 0.0337752
7 6.1057386 down 0.01979206 

RGMA 1.7255824 down 0.0359699
65 2.7792342 down 0.02483875 

WNT3A 1.7084576 down 0.0151369
81 3.7459834 down 0.010494264 

EXOSC9 1.6995902 down 0.0359699
65 2.3549697 down 0.018415125 

MLKL 1.6928365 down 0.0340114
53 2.6070924 down 0.034152403 

SKP2 1.6798143 down 0.0463644
75 6.201134 down 0.011175673 

MCM6 1.6751058 down 0.0369763
08 4.515005 down 0.0293418 

HSPA14 1.6679413 down 0.0203970
97 2.4655054 down 0.03239546 

C16orf57 1.6609529 down 0.0439048
82 2.3285222 down 0.013623286 

DENND5
B 1.6467699 down 0.0432605

63 3.0113428 down 0.025281847 

ISCU 1.6310554 up 0.0337752
7 2.0759463 up 0.019925347 

MCM3 1.5997593 down 0.0158902
85 4.7376986 down 0.036083378 
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MAPK1 1.5989597 down 0.0385724 1.6372826 down 0.033621464 

C19orf33 1.5845016 up 0.0395828
86 2.9641342 up 0.009637909 

KPNA2 1.5718057 down 0.0205565
2 5.1316524 down 0.009637909 

VEGFB 1.5688016 down 0.0251623
1 1.6781598 down 0.040961143 

HBE1 1.5623577 up 0.0208829
03 1.7742529 up 0.04189587 

CAPRIN2 1.5605733 up 0.0489214
36 3.5148416 up 0.027339572 

AGPAT9 1.5551192 up 0.0385724 2.5523818 up 0.02000229 

IRF2BP2 1.5423459 up 0.0416684
5 2.382568 up 0.023199093 

SOX18 1.5361217 down 0.0463644
75 3.5983922 down 0.014546686 

PDK3 1.5346462 down 0.0395828
86 4.000597 down 0.006875412 

FTHL12 1.5322818 up 0.0439048
82 1.6962612 up 0.028919566 

CXXC5 1.5229149 down 0.0415099 2.1759 down 0.023516852 

PALM 1.5123409 down 0.0341223
63 1.8638031 down 0.019069718 

HNRPR 1.5016694 down 0.0359251
1 2.3435025 down 0.03302884 

MNX1 1.5010701 down 0.0395828
86 3.2384956 down 0.010320948 

EBP 1.4891913 down 0.0372323
77 3.0118616 down 0.03704989 

SESTD1 1.4801818 down 0.0432605
63 1.8491256 down 0.037892688 

OR51B4 1.4797486 up 0.0132769
12 2.2153027 up 0.042767514 

ZFAND2
B 1.4774361 up 0.0416684

5 2.6522803 up 0.035803158 

HOXB5 1.4752026 down 0.0383200
7 1.4037037 down 0.034659225 

TIMP1 1.4701642 up 0.0408046
02 1.7006038 up 0.019676114 

PLK4 1.4559085 down 0.0191473
5 2.9407966 down 0.035803158 

RFC5 1.4477861 down 0.0298640
9 3.5814073 down 0.030800033 

FBXL6 1.4369808 down 0.0439048
82 1.5586385 down 0.03550055 

EIF1 1.4366524 up 0.0359699
65 1.9157197 up 0.035803158 

THOC4 1.4345134 down 0.0359699
65 2.03639 down 0.027054867 

POLE3 1.4310231 down 0.0375423
4 1.8999945 down 0.04700748 

HINT3 1.4115971 up 0.0416684 2.188101 up 0.04526477 
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5 

CHAF1B 1.4074318 down 0.0375423
4 5.3974214 down 0.034900032 

ATP6V0E
2 1.4064207 down 0.0337293

1 1.6914942 down 0.038681243 

FKBP11 1.3944719 down 0.0337752
7 2.1215975 down 0.02172359 

SLC30A3 1.3893262 down 0.0158902
85 1.8657 down 0.031863093 

HSPE1 1.3826358 down 0.0408046
02 2.1072977 down 0.048814435 

ZBED1 1.3727813 down 0.0390741
27 3.144089 down 0.036608156 

SBK1 1.3684316 down 0.0477059
67 1.9522434 down 0.040106535 

AP1B1 1.3552212 down 0.0489214
36 1.9763128 down 0.02149589 

FSD1 1.3415892 down 0.0359699
65 11.134916 down 0.04572148 

AURKA 1.3264245 down 0.0337752
7 6.139144 down 0.009637909 

LQK1 1.3059943 down 0.0469031
33 2.4335284 down 0.034964904 

PXMP2 1.3001416 down 0.0479918
98 2.7315168 down 0.01220171 

LOC4011
15 1.295779 down 0.0468187

8 1.8712622 down 0.03828878 

LOC2839
53 1.2954808 up 0.0463644

75 1.6647888 up 0.026660295 

AOF2 1.2897426 down 0.0390741
27 2.2657194 down 0.04863222 

LOC2850
74 1.2809885 up 0.0251623

1 1.9150605 up 0.04572148 

RPLP0 1.2571274 up 0.0439048
82 1.8747282 up 0.010948853 

C15orf23 1.2525215 down 0.0463644
75 3.4935677 down 0.02172359 
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Table A1.3 TIC10-induced changes that occur at 48 but not 18 hours. 

Symbol Fold change 
(48 hr) 

Direction 
of change 
(48 hr) 

Corrected 
p-value (48 
hr)  

KRT81 22.87212 up 0.031330235 

SPRR2D 20.364887 up 0.011803946 

LOC644350 17.00929 up 0.013623286 

PDE4B 15.559404 down 0.04863222 

CHAC1 13.896631 up 0.032282915 

KITLG 13.712438 down 0.040961143 

DUT 13.518569 down 0.03166666 

WNT16 13.495952 down 0.029269956 

NASP 13.279105 down 0.020884402 

KITLG 13.210174 down 0.039560787 

EPN3 12.114876 down 0.020786807 

SYTL2 12.064288 down 0.015676063 

OAS3 11.712095 down 0.017849304 

E2F2 10.880897 down 0.019979259 

LOC728285 10.840668 up 0.019676114 

CCNE2 10.770494 down 0.009637909 

SCARA3 10.474275 down 0.013284133 

KIF20A 10.363674 down 0.005355649 

MUM1L1 9.766091 down 0.009082349 

GLDC 9.538173 down 0.010494264 

CENPI 9.49716 down 0.006875412 

LMNB1 9.3915205 down 0.001415815 

ASF1B 9.102031 down 0.02845703 

OVOL2 9.011101 down 0.033800293 

SPC25 8.890372 down 0.011175673 

ERCC6L 8.85409 down 0.019112604 

TRIOBP 8.815069 down 0.008422944 

LOC643031 8.438131 up 0.042351622 

FAM83D 8.312255 down 0.013383459 

SLC22A15 8.255252 up 0.011299649 

ACBD7 8.246232 down 0.009082349 

FGD6 8.156124 up 0.019676114 

FAM64A 7.8254695 down 0.012055384 

HMGB3 7.775924 down 0.02084703 
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CDC25C 7.6466446 down 0.020786807 

KIF11 7.63171 down 0.011175673 

DPYSL4 7.557704 down 0.024277335 

BIRC5 7.555325 down 0.009637909 

LRRC26 7.466722 down 0.005355649 

PSRC1 7.404295 down 0.014698844 

FAM110C 7.3803325 up 0.035745442 

MCM10 7.3715243 down 0.048089013 

PSRC1 7.304031 down 0.026639156 

C14orf106 7.25503 down 0.038681243 

PLK1 7.2176604 down 0.02015493 

GMNN 7.176904 down 0.02172359 

FEN1 7.1521206 down 0.010108237 

KIF11 7.0250816 down 0.01403898 

STMN1 6.7894835 down 0.012480085 

CDCA1 6.7659674 down 0.038666554 

DLGAP5 6.6393757 down 0.011155665 

EXO1 6.628085 down 0.028030183 

ELOVL3 6.559566 down 0.011401887 

TMPO 6.5349975 down 0.02149589 

AURKA 6.5040994 down 0.009082349 

GPR162 6.5033436 down 0.009082349 

GAS2L3 6.4982243 down 0.040173456 

SPC25 6.4783406 down 0.021489922 

ETS1 6.475164 up 0.018952347 

CENPM 6.433197 down 0.037676003 

ZWINT 6.31953 down 0.009637909 

EXO1 6.3011165 down 0.013018658 

NUDT1 6.2899933 down 0.03735992 

KCNMB4 6.2493415 down 0.029155023 

CDC25C 6.2168417 down 0.001415815 

DLGAP5 6.1732335 down 0.011621549 

CENPA 6.1197023 down 0.005355649 

SHMT1 6.0678115 down 0.011859206 

TNFAIP8L1 6.0572195 down 0.038865466 

NEIL3 6.0508375 down 0.011175673 

CCNB1 6.0448055 down 0.015017457 

RRM2 6.004174 down 0.009282365 
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RDM1 6.0035253 down 0.013623286 

CCNF 5.9901285 down 0.010494264 

DLEU2 5.9863257 down 0.01539818 

NDRG4 5.904548 down 0.011153566 

POLA1 5.892396 down 0.032528717 

RACGAP1 5.841873 down 0.029243037 

AURKB 5.8355775 down 0.022848561 

KIFC1 5.7849426 down 0.001415815 

TK1 5.7416725 down 0.022310423 

KIF23 5.7285833 down 0.02084703 

KIF18A 5.632663 down 0.037592698 

LAT2 5.626406 up 0.01634601 

BUB3 5.55705 down 0.046907336 

CDCA8 5.5439386 down 0.015017457 

PBK 5.5204873 down 0.027295636 

CRABP2 5.4847765 down 0.048815902 

ERCC6L 5.469881 down 0.026067587 

NMU 5.427126 down 0.009637909 

CDC45L 5.4190116 down 0.030849408 

CTSL2 5.4095516 down 0.001415815 

CDCA2 5.3990536 down 0.01739141 

NUDT6 5.3896294 down 0.009637909 

CDCA3 5.347088 down 0.011175673 

C6orf173 5.337447 down 0.02124337 

REEP1 5.336049 down 0.009082349 

HELLS 5.3230834 down 0.037041813 

ZWINT 5.317235 down 0.01539818 

CCNA2 5.29894 down 0.009637909 

RHBDL3 5.2750874 down 0.009082349 

UHRF1 5.139834 down 0.037676003 

KIAA0101 5.1377764 down 0.02094271 

CENPF 5.0995736 down 0.019069718 

RAB26 5.092979 down 0.027581686 

IRX3 5.0789595 down 0.008422944 

KIF4A 5.0721436 down 0.048220243 

SGOL2 5.0188484 down 0.02172359 

DEPDC1B 4.9824233 down 0.016343728 

HES2 4.9699864 down 0.04393202 
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CENPM 4.940828 down 0.03343619 

C9orf116 4.919287 down 0.037592698 

MYD88 4.9079204 down 0.019118873 

CENPE 4.906756 down 0.013199668 

GTSE1 4.899883 down 0.009082349 

C6orf48 4.8808703 up 0.025907174 

KIF20B 4.8604856 down 0.009082349 

FAM111A 4.8383613 down 0.001946386 

KIF2C 4.812601 down 0.014965564 

LOC100132715 4.8096275 down 0.02483875 

LOC642458 4.80832 down 0.015017457 

SPC24 4.7974977 down 0.010320948 

UBE2T 4.7957363 down 0.019502776 

HNRNPA1 4.78581 down 0.01888759 

BUB1 4.7817197 down 0.010494264 

MCM10 4.771218 down 0.048815902 

CCNB2 4.770637 down 0.004092405 

TYMS 4.748552 down 0.026067587 

RAD54B 4.7445145 down 0.02315677 

CBR4 4.7408314 down 0.021557467 

CCDC18 4.664032 down 0.020105906 

HJURP 4.663956 down 0.028689677 

UBE2L6 4.6557636 down 0.019676114 

MATN2 4.646336 down 0.0256847 

RACGAP1 4.6359878 down 0.018049316 

SLC2A6 4.633281 down 0.015232953 

CENPO 4.621668 down 0.039560787 

CDC2 4.591013 down 0.03507711 

CEP78 4.5884104 down 0.02219234 

PLEC1 4.580634 up 0.010494264 

TACC3 4.5760083 down 0.03729315 

ACAT2 4.5652003 down 0.020616097 

RAD51AP1 4.533677 down 0.02000229 

NEURL1B 4.5141263 down 0.019069718 

GCA 4.513552 down 0.009637909 

LOC400750 4.511523 up 0.043520328 

AGPAT4 4.5046287 up 0.01765344 

HMMR 4.5022225 down 0.011459867 
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RBCK1 4.497043 up 0.009282365 

PARP12 4.4935718 down 0.03648406 

LOC100128007 4.47767 down 0.01970352 

MARCKSL1 4.468236 down 0.04703808 

H3F3B 4.4668083 down 0.028689677 

PARM1 4.465968 down 0.039991904 

MCM7 4.4410844 down 0.020818258 

ENPP1 4.438927 down 0.03475651 

DNAJB9 4.4387183 up 0.013845812 

C1orf112 4.4327664 down 0.012480085 

GINS3 4.42987 down 0.03704989 

RBMS2 4.3906484 up 0.022892712 

KIF14 4.3718767 down 0.030929556 

PITX2 4.3705945 down 0.03510957 

MXD3 4.3543115 down 0.029269956 

STX1A 4.3463745 up 0.042888787 

CD47 4.3413696 down 0.027504178 

PACSIN1 4.3391404 down 0.014711096 

CBX2 4.3391232 down 0.023166766 

POLE2 4.3360443 down 0.046907336 

CDC2 4.3216915 down 0.028785033 

MT1X 4.3185945 up 0.015757278 

FANCL 4.3055544 down 0.031866338 

ORC6L 4.3038898 down 0.01739141 

SGOL1 4.3006773 down 0.019069718 

CDCA5 4.2843122 down 0.019594423 

CCDC34 4.2837777 down 0.046669953 

FBXO5 4.2822437 down 0.010494264 

CKAP2 4.238105 down 0.011299649 

NCAPG 4.2282734 down 0.028197957 

ANLN 4.1818213 down 0.018512405 

BRCA1 4.1777787 down 0.04029018 

HYLS1 4.1775956 down 0.013623286 

NEK2 4.1753235 down 0.010494264 

WDR54 4.170082 down 0.01855878 

HNRPDL 4.162792 down 0.03686227 

CDCA7 4.1429157 down 0.046559807 

SGOL1 4.1425056 down 0.015017457 
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FAM111A 4.141056 down 0.009637909 

HNRNPM 4.140647 down 0.028785033 

DEPDC1 4.1376324 down 0.04648964 

RFC3 4.1326513 down 0.048089013 

PTTG3P 4.0963674 down 0.012480085 

ALDOC 4.0802355 down 0.021112772 

CA2 4.077626 down 0.04201881 

SKP2 4.047142 down 0.034872416 

MGC40489 4.0452466 down 0.02483875 

CD24 4.017256 down 0.043520328 

SNN 4.0092673 down 0.009637909 

PCNA 4.0073233 down 0.0332967 

PRC1 4.0032325 down 0.012673016 

HERC6 3.997227 down 0.025628919 

CYB5B 3.9949327 down 0.018563876 

C17orf97 3.9880593 down 0.019069718 

NUSAP1 3.9862816 down 0.022564188 

MELK 3.9852543 down 0.009082349 

POLR3H 3.980437 down 0.02488853 

RBM14 3.971714 down 0.04572148 

HMMR 3.963014 down 0.017037364 

PHLDA1 3.9527283 down 0.018850883 

NDC80 3.9501443 down 0.026832432 

HSPA13 3.9345326 up 0.020781957 

ASRGL1 3.9328437 down 0.015468261 

FZD4 3.9322994 down 0.024964584 

FGFR3 3.9094398 down 0.014711096 

CCDC99 3.9052114 down 0.019069718 

IFI30 3.9048216 down 0.023196464 

DEPDC1B 3.9041016 down 0.032282915 

RBBP9 3.9000237 down 0.04755203 

CDCA4 3.887337 down 0.04526477 

CENPE 3.887026 down 0.013490164 

SH3PXD2A 3.8855195 down 0.04648964 

CPA4 3.8793988 up 0.009637909 

RFC3 3.8566208 down 0.014711096 

LOC100134134 3.8513467 down 0.01539818 

LOC645726 3.8433201 down 0.032760013 
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PTTG1 3.8410702 down 0.011808776 

HSH2D 3.8332627 down 0.01739141 

DPYSL2 3.8260615 down 0.048866253 

STIL 3.8210115 down 0.013276903 

EME1 3.8202705 down 0.043860547 

UNC5A 3.8127027 down 0.010494264 

EFCAB4A 3.8048882 up 0.010108237 

ISL1 3.8047178 down 0.009082349 

FAM54A 3.8043194 down 0.029269956 

LOC644124 3.7998812 down 0.035803158 

MYBL1 3.7910256 down 0.033783652 

RP2 3.7896633 down 0.03236323 

KLHDC8B 3.7868638 down 0.02149589 

C4orf33 3.7797513 down 0.048089013 

PTTG1 3.7756996 down 0.009282365 

LOC644150 3.7662976 up 0.014307831 

LRRCC1 3.7488236 down 0.015445222 

C16orf75 3.740168 down 0.049701784 

CDT1 3.7399356 down 0.022848561 

CKAP2L 3.7398145 down 0.00971984 

KREMEN2 3.739478 down 0.029269956 

RBBP4 3.7386875 down 0.04122609 

SRI 3.7375934 down 0.044783186 

TUBB2C 3.7355642 down 0.024964584 

LOC728037 3.7274244 down 0.045280136 

CENPA 3.7237263 down 0.001634129 

HAUS8 3.7235696 down 0.037634652 

SPAG5 3.7217443 down 0.035745442 

MCM4 3.7176435 down 0.04915255 

LOC729816 3.7057064 down 0.009082349 

C15orf23 3.7038693 down 0.013536799 

HNRPM 3.6866455 down 0.025281847 

RNASE4 3.6794984 down 0.015232953 

NUSAP1 3.676112 down 0.009282365 

SDC4 3.6619465 up 0.015757278 

NUDT18 3.661188 down 0.024277335 

TMEM158 3.652971 up 0.041504502 

CD68 3.642541 up 0.03354969 
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POLQ 3.6384122 down 0.024277335 

CDKN3 3.6350853 down 0.015445222 

SUV39H1 3.6176925 down 0.011175673 

FAM72A 3.613847 down 0.031774323 

C13orf34 3.6107843 down 0.028689677 

BARD1 3.6092045 down 0.047984716 

LOC653874 3.607259 down 0.030849408 

ANKRD32 3.6036756 down 0.045905516 

PAQR4 3.6035013 down 0.009637909 

PCNXL2 3.600421 up 0.027041782 

PYROXD1 3.5899117 up 0.049825776 

CEP55 3.579297 down 0.014711096 

TMEM14A 3.5748649 down 0.010108237 

MICB 3.5682986 down 0.015017457 

C13orf3 3.5656912 down 0.037944797 

PGK1 3.562374 down 0.021018256 

NEK2 3.5611677 down 0.011933 

SPRY4 3.5595887 up 0.037335012 

ZNF207 3.5574408 down 0.03239546 

NDRG2 3.5564778 down 0.009082349 

TCF7L2 3.5501168 down 0.045280136 

UCA1 3.5494118 down 0.009082349 

SORT1 3.5491068 down 0.024277335 

CALM1 3.5483825 down 0.015017457 

ACYP1 3.54442 down 0.011188068 

TTK 3.543055 down 0.013623286 

INCENP 3.5400562 down 0.04189587 

TOP2A 3.5302217 down 0.028689677 

TMEM19 3.5301304 down 0.04122609 

CCDC34 3.512553 down 0.009637909 

HIBCH 3.5112617 down 0.028532717 

MIPEP 3.5091436 down 0.03497738 

PSMC3IP 3.504071 down 0.039536465 

GNA12 3.4916215 down 0.030929556 

ATAD2 3.4891775 down 0.029155023 

HPCAL4 3.4840522 down 0.045905516 

LOC728069 3.4818 down 0.03893217 

C10orf6 3.4797213 down 0.04122609 
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RILPL2 3.476999 down 0.020818258 

RAD54L 3.4714081 down 0.048719645 

PKMYT1 3.4531517 down 0.039217066 

FHL2 3.4501648 up 0.018237824 

HELLS 3.4411922 down 0.048075076 

MASTL 3.439919 down 0.015065883 

CD55 3.439779 up 0.026923697 

SFRS7 3.4309611 down 0.0389214 

KIF5C 3.429676 down 0.029269956 

OIP5 3.4275894 down 0.036367454 

TCEB2 3.4249864 down 0.033800293 

DSCC1 3.4217265 down 0.032754973 

OIP5 3.4169834 down 0.013536799 

MGST2 3.4129136 down 0.025863012 

NCAPG2 3.4111958 down 0.048909087 

HIRIP3 3.4090297 down 0.03984006 

WDR76 3.4080312 down 0.033621464 

FBXO5 3.3992612 down 0.04189587 

ASPM 3.3934994 down 0.04317722 

CDC20 3.3808331 down 0.021350387 

XPOT 3.3783824 up 0.04150014 

HNRNPM 3.3716192 down 0.02124337 

LOC100134530 3.35707 up 0.011046462 

ECT2 3.3529403 down 0.03367808 

CAPRIN2 3.352481 up 0.01828428 

FAM195B 3.344682 up 0.011153566 

LOC100133489 3.3443143 down 0.033800293 

FAT1 3.3363414 down 0.014711096 

STS-1 3.3298702 down 0.026706144 

DLK2 3.3275895 down 0.024277335 

CELSR2 3.318977 down 0.04360168 

ID2 3.313955 down 0.026923697 

EHHADH 3.3133967 down 0.043520328 

CRYZ 3.3112588 down 0.047384284 

C12orf48 3.3108082 down 0.023635108 

LOC442727 3.3098009 down 0.019069718 

MKX 3.3055725 up 0.04393202 

SCD5 3.3049436 down 0.03984006 
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RAD51 3.3023434 down 0.04029018 

CACNA2D2 3.2997856 down 0.021618756 

C16orf59 3.2955656 down 0.017037364 

HPSE 3.2883108 down 0.028689677 

TMEM98 3.2862358 down 0.015676063 

TUBB4Q 3.2766209 down 0.02149589 

TUBA1A 3.2555857 down 0.013536799 

ID2 3.2357852 down 0.009637909 

SLC27A3 3.2256792 down 0.01539818 

LOC649679 3.2232687 down 0.02626058 

RHOF 3.2223847 up 0.04863814 

CCND3 3.2148898 down 0.027339572 

CEP78 3.2146413 down 0.04199974 

HSPBL2 3.2138243 down 0.03239546 

SMC2 3.2035306 down 0.022496616 

PGAM4 3.2032897 down 0.01539818 

SLC25A37 3.2009163 up 0.04172988 

DPY19L1 3.2007232 down 0.023712968 

CKS2 3.2002091 down 0.019069718 

HNRNPC 3.1915262 down 0.040688314 

MELK 3.1901002 down 0.028050097 

APITD1 3.1822155 down 0.010494264 

C14orf143 3.1799107 down 0.013383459 

KNTC1 3.1770813 down 0.034067824 

TRIM5 3.1683927 down 0.023166766 

CENPL 3.163046 down 0.027728345 

HMGB2 3.1623216 down 0.028689677 

C9orf140 3.1615777 down 0.04534044 

MCM7 3.1593392 down 0.033800293 

C16orf33 3.1516464 down 0.030929556 

SLC37A4 3.13561 down 0.021712786 

SLC31A2 3.1221423 down 0.020105906 

PFKFB4 3.1210818 down 0.035803158 

ZNF480 3.119704 down 0.009082349 

LOC100133012 3.109374 down 0.037676003 

KIAA1524 3.1090415 down 0.031794265 

SMC4 3.109021 down 0.04890672 

C3orf31 3.1079314 down 0.042214286 
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BNIP1 3.1028907 up 0.047412697 

FANCI 3.100701 down 0.03477001 

HNRNPH2 3.1000047 down 0.037041813 

LOC727848 3.0923474 up 0.01539818 

LOC729298 3.0883057 down 0.027339572 

LOC286016 3.0872667 down 0.02124337 

CRISPLD2 3.0848513 down 0.016971381 

SEPX1 3.073966 down 0.008422944 

TUBGCP5 3.0710745 down 0.018850883 

B3GNT1 3.0690162 down 0.03327353 

CCDC77 3.0682442 down 0.011299649 

CDAN1 3.0673432 down 0.019293752 

FAM178A 3.0498574 down 0.037460446 

BCAP29 3.048951 down 0.017393887 

DPYSL3 3.0364485 down 0.035004396 

YWHAB 3.035052 down 0.017927684 

LIN54 3.0324829 down 0.03166666 

SMC2 3.0317595 down 0.031863093 

P704P 3.0305374 up 0.011859206 

LOC100132112 3.0297573 up 0.011175673 

MYOM2 3.0195127 down 0.045986656 

METTL13 3.0168867 down 0.037892688 

TTLL3 3.0134888 up 0.034964904 

FTHL3 3.0121117 up 0.02993696 

C11orf82 3.009817 down 0.030572256 

COMMD4 3.007248 down 0.032760013 

C5orf34 3.0067594 down 0.028689677 

CCDC136 2.995271 down 0.042351622 

PSMC3IP 2.9945176 down 0.03239546 

IL11RA 2.9911304 down 0.025628919 

FZD2 2.989978 down 0.020818258 

LOC441019 2.9842482 up 0.030621788 

DYNLL1 2.9824443 down 0.029931428 

C9orf40 2.9782815 down 0.035698585 

ANG 2.975779 down 0.016343728 

SFRS6 2.9749725 down 0.04410758 

C14orf80 2.9690497 down 0.028614627 

CRIP1 2.9618313 down 0.037460446 
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CDK5 2.9599915 down 0.028689677 

ENO2 2.9534712 down 0.011046462 

LOC645430 2.9495406 up 0.02172359 

DNAJA1 2.9494371 down 0.019069718 

PIM2 2.9444952 down 0.02172359 

TOPBP1 2.9427814 down 0.019069718 

LOC653820 2.9413242 down 0.042351622 

CHEK1 2.9242191 down 0.040106535 

HSBP1 2.9192536 down 0.036083378 

LAMC2 2.9175026 up 0.046559807 

TNFRSF10B 2.9140403 up 0.034964904 

TRA2A 2.9135418 down 0.029155023 

TPM4 2.909412 up 0.049701784 

TST 2.908785 down 0.031863093 

CHSY3 2.9025369 down 0.008422944 

HSPH1 2.8990865 down 0.04572148 

NCAPD2 2.8966422 down 0.04661127 

OR7E156P 2.8924937 up 0.035803158 

VASH1 2.891771 down 0.038008302 

LOC732007 2.8914173 down 0.011299649 

LOC100134304 2.8889635 down 0.044505358 

ST3GAL5 2.8851223 down 0.013284133 

CLCC1 2.8849442 down 0.025361717 

ID3 2.884441 down 0.022213638 

SUOX 2.8810081 down 0.013956664 

WDR51A 2.871488 down 0.023618625 

TTLL3 2.8569467 up 0.024226021 

PDGFRL 2.8559062 down 0.027256878 

MSX1 2.8526742 down 0.025628919 

LOC730284 2.8526366 up 0.027728345 

C18orf54 2.8478231 down 0.019069718 

SYTL4 2.8365095 down 0.016327243 

TMEM50B 2.834119 down 0.015232953 

NSBP1 2.8321507 down 0.036434762 

LOC440043 2.8321135 down 0.01739141 

TUBB 2.8316617 down 0.02149589 

ZC3H4 2.8316422 down 0.028785033 

RFWD3 2.8303266 down 0.015232953 
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LOC727848 2.8263502 up 0.037041813 

VPS36 2.8247864 down 0.03735992 

PHF19 2.823849 down 0.04201881 

BRI3BP 2.8203974 down 0.0332967 

PRDX2 2.8191094 down 0.009637909 

MSH6 2.8175948 down 0.03704989 

MYH10 2.8165193 down 0.024277335 

PGAM1 2.8051245 down 0.012765218 

DNAJC22 2.8043616 down 0.025412573 

LOC728554 2.7910333 down 0.048075076 

MAGEE1 2.7875392 down 0.02154171 

MAP6D1 2.7852998 down 0.031774323 

GPSM2 2.7820997 down 0.010948853 

LOC653071 2.7796497 down 0.03648406 

UBL5 2.7731595 down 0.030113384 

RAB11A 2.7723866 down 0.01855878 

TIMELESS 2.7712085 down 0.04552708 

SPIN4 2.7642436 down 0.048075076 

TRIM9 2.7621667 up 0.03787446 

NMB 2.7555475 down 0.019889398 

C17orf53 2.7549064 down 0.025662778 

FASTKD5 2.7514584 down 0.02484479 

SRGAP2 2.7477193 down 0.010494264 

ACYP1 2.7377877 down 0.03704989 

SSH2 2.7345333 down 0.009082349 

CASP7 2.730084 down 0.02483875 

LOC728975 2.7291954 up 0.026206655 

LUZP1 2.7287505 down 0.018049316 

CAMK2N1 2.7215588 up 0.04709403 

DCUN1D3 2.7183058 down 0.025856461 

ANKFY1 2.7167091 down 0.027835343 

SNORD3A 2.7075815 up 0.0470869 

RPA3 2.7063687 down 0.036434762 

BCAR3 2.6989 up 0.03147083 

HOXA5 2.6988916 down 0.038435854 

ECE2 2.6945715 up 0.02149589 

HRIHFB2122 2.6875632 down 0.036741998 

ELK3 2.6833365 up 0.028689677 
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MTERF 2.6815927 down 0.048837963 

CLDN23 2.6786895 down 0.017037364 

ETS1 2.6785412 up 0.030572256 

CPT2 2.6757777 down 0.009082349 

SFRS5 2.671986 down 0.011621549 

WDR79 2.670065 down 0.03704989 

C11orf67 2.6698403 down 0.009637909 

HMGCR 2.6664257 down 0.04057321 

TROAP 2.6657176 down 0.014852929 

AKAP12 2.6646588 up 0.046907336 

HMGA2 2.6634648 down 0.046217654 

AXL 2.6633112 up 0.037944123 

ARAP2 2.6585877 up 0.019983377 

TTC26 2.6565683 down 0.009637909 

CRELD2 2.6538162 down 0.009282365 

ST7 2.6474783 up 0.018512405 

NDUFB6 2.6462922 down 0.027041782 

RFC2 2.637395 down 0.031002449 

HMGB2 2.635687 down 0.040984523 

LOC93622 2.6325326 down 0.048508342 

LMAN2L 2.6308708 down 0.027289473 

FBXL2 2.6288323 down 0.030849408 

C3orf21 2.627443 down 0.03562497 

BCOR 2.6259348 down 0.020818258 

SIVA 2.6202457 down 0.048089013 

OR7E156P 2.6156414 up 0.019069718 

LOC729101 2.6134353 down 0.032760013 

WDR67 2.6101182 down 0.010108237 

LOC728873 2.6089678 down 0.009637909 

UBE2C 2.6023574 down 0.037892688 

PPM1H 2.5987866 down 0.018563876 

TMEM44 2.5980058 down 0.024756262 

ARID5B 2.5951836 down 0.04863222 

GALK1 2.5937145 down 0.011175673 

NUP107 2.5934649 down 0.04526477 

ENTPD3 2.592584 up 0.010494264 

CSNK2A1P 2.5919604 up 0.028689677 

HNRNPR 2.5899053 down 0.014307831 
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CARHSP1 2.5885742 down 0.014032008 

COL7A1 2.587748 up 0.038873874 

C1orf85 2.5834363 down 0.014308982 

LARP6 2.5814035 up 0.027457168 

PGAM4 2.5789425 down 0.011859206 

GLIPR2 2.5762346 down 0.021712786 

LOC727761 2.5727322 down 0.04234465 

RNASE4 2.570997 down 0.023780325 

DSN1 2.5704174 down 0.034064546 

FXYD5 2.5702758 up 0.024277335 

DCAF6 2.5689318 down 0.024277335 

LOC653884 2.568462 down 0.019112604 

SIVA 2.5632894 down 0.018389799 

THOC3 2.5627053 down 0.033800293 

LOC646993 2.5625517 down 0.037892688 

PIM1 2.5610344 up 0.033128947 

SRA1 2.5581427 down 0.034964904 

SLC2A1 2.554747 down 0.023367506 

ZWILCH 2.553166 down 0.037676003 

TFAP2C 2.5512326 down 0.028007232 

SLC9A3R1 2.550676 down 0.0262167 

MCM8 2.5501223 down 0.03239546 

EIF4EBP2 2.5500455 down 0.038022514 

LRRC20 2.5414517 down 0.027835343 

TRIM8 2.536754 up 0.013536799 

VCP 2.5337343 down 0.04572148 

FANCG 2.5332866 down 0.019069718 

TMEM30A 2.5316613 down 0.009082349 

UBE2C 2.52912 down 0.021112772 

VAMP1 2.5271137 down 0.010320948 

FAT1 2.526669 down 0.043520328 

RAN 2.5225947 down 0.036815345 

FRMD8 2.518517 down 0.019069718 

FN3KRP 2.517292 down 0.009637909 

PREI3 2.5134122 down 0.039287504 

MOBKL3 2.506754 down 0.04080518 

C3orf37 2.5035908 down 0.02615731 

ALPK1 2.4971986 up 0.04986984 
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RRM1 2.4968355 down 0.02483875 

IFRD1 2.4946222 up 0.04572148 

IRX1 2.4937544 up 0.013311975 

VASN 2.4917755 down 0.010494264 

PAFAH1B1 2.4912255 down 0.009637909 

EML1 2.490393 down 0.013623286 

ARL6IP6 2.4828806 down 0.048075076 

PRDX2 2.4787025 down 0.013956664 

MALL 2.4761944 down 0.01337127 

LOC387882 2.4715059 down 0.04168716 

SLC25A14 2.469494 down 0.021350387 

ZRANB2 2.4693487 down 0.04671367 

SLC7A5 2.4658372 up 0.02483875 

KIF15 2.4657977 down 0.045133196 

CASP6 2.4634297 down 0.0291741 

DNAJC9 2.4630656 down 0.01539818 

ANG 2.460756 down 0.028425978 

LOC646135 2.4578223 up 0.032420322 

LOC100133600 2.4566765 up 0.028050097 

GGH 2.4523826 down 0.0332967 

LOC389386 2.4495063 down 0.010108237 

FSTL1 2.4486938 down 0.009637909 

PECR 2.4478743 down 0.029084174 

TSGA14 2.4470835 down 0.033642087 

PPIA 2.4447687 down 0.04307706 

PDCL 2.444215 down 0.029166568 

LLGL1 2.442108 down 0.04312602 

ZDHHC13 2.4322915 down 0.034900032 

DGCR11 2.4246979 up 0.028007232 

KIAA1128 2.422853 up 0.029948562 

PTP4A2 2.42155 down 0.04172988 

TTC8 2.421174 down 0.042888787 

HPS6 2.41799 down 0.01539818 

THAP11 2.41664 down 0.038887545 

DNMT1 2.4160693 down 0.035698585 

GAMT 2.41501 down 0.03510957 

HEYL 2.4148042 down 0.029319767 

GOLGA6B 2.4116368 up 0.042340405 



www.manaraa.com

170 

C3orf75 2.410935 down 0.043304022 

REEP5 2.4082963 down 0.022525989 

BCL2L12 2.4080884 down 0.013535026 

TSPAN3 2.4078395 down 0.023755241 

NSL1 2.4075866 down 0.04700748 

CSTF3 2.4055622 down 0.033800293 

CKS2 2.4050071 down 0.038199354 

TFAP2C 2.4033628 down 0.015676063 

LOC729708 2.4030635 down 0.035004396 

LOC100128771 2.3971407 up 0.01539818 

FAM46A 2.3959749 down 0.003363579 

TUBB6 2.3948221 down 0.042351622 

SKP1 2.391439 down 0.031863093 

MID1 2.3876643 down 0.01473459 

CTPS2 2.3843188 down 0.048815902 

ZNF544 2.3842068 down 0.02149589 

C17orf48 2.383193 up 0.026206655 

NUP62CL 2.3821442 down 0.010494264 

NEBL 2.380658 down 0.033128947 

KDELR3 2.3790455 down 0.036434762 

ARL6IP1 2.3755505 down 0.035803158 

GEM 2.3753128 up 0.0359933 

KATNAL1 2.3736618 down 0.040961143 

SLC44A3 2.3729758 down 0.027041782 

RNU1A3 2.37189 up 0.03302884 

DEF8 2.3700402 down 0.027603064 

LOC653226 2.367699 down 0.014307831 

ISCA2 2.3659983 down 0.03343619 

TRAPPC3 2.3624034 down 0.036434762 

ARID3B 2.359981 up 0.020105906 

ATP6V1E2 2.3594182 down 0.03239546 

PPIL5 2.3585556 down 0.028050097 

KIAA1618 2.357438 down 0.046277195 

DNCL1 2.3574347 down 0.03735992 

VGF 2.3571107 up 0.028197957 

RHBDD1 2.3515217 up 0.04869699 

NCRNA00094 2.3509653 down 0.021112772 

LOC645609 2.3427892 up 0.014720959 
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PSMD5 2.342009 down 0.014965564 

LOC654161 2.3415682 up 0.037592698 

DIAPH3 2.338686 down 0.01855878 

DHX9 2.3385954 down 0.025628919 

LOC728969 2.3345785 down 0.011401887 

PRKAB2 2.332961 up 0.045311127 

ZDHHC13 2.330754 down 0.009282365 

PLAUR 2.3292725 up 0.02483875 

LRIG2 2.3249514 up 0.02488853 

C2orf7 2.3207424 down 0.03735992 

LMNA 2.3159363 down 0.023354659 

HNRPA2B1 2.3140907 down 0.037892688 

FAM190B 2.3138266 up 0.04572148 

SIVA1 2.312023 down 0.029448941 

RAB23 2.3080893 down 0.010297052 

RTN4R 2.304563 down 0.022213638 

LOC100132863 2.302821 down 0.035536382 

LOC644422 2.298969 down 0.027835343 

RPA1 2.2988896 down 0.04757001 

LOC100134634 2.2967913 up 0.032038588 

HSPB1 2.294966 down 0.013538596 

PFDN2 2.2945962 up 0.03548969 

LOC644101 2.2922812 down 0.035487957 

UBE2N 2.2898746 down 0.044768553 

LOC729021 2.2842572 up 0.04572148 

GSDMD 2.2827885 down 0.048075076 

SH3KBP1 2.279302 up 0.009282365 

HSPA4 2.2782433 down 0.020980466 

PABPC5 2.2767103 up 0.040888242 

SFRS5 2.267842 down 0.009637909 

KLHDC5 2.2668524 down 0.04862383 

ALAD 2.2652564 down 0.02172359 

TSPAN3 2.2639294 down 0.027314134 

TUBG1 2.2618132 down 0.038681243 

PHTF1 2.261665 down 0.045311127 

MRPL35 2.2536952 down 0.04514841 

ZSCAN12L1 2.2515748 up 0.04112573 

FAM36A 2.249075 down 0.035803158 
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PKIB 2.2448933 down 0.035803158 

PGK1 2.2426114 down 0.009082349 

ANKRD19 2.2421842 up 0.028689677 

ANGPTL4 2.235869 up 0.02483875 

TMEM50A 2.234504 down 0.042351622 

TUBG1 2.2343614 down 0.006875412 

LOC731049 2.2339597 down 0.009082349 

ZNF277 2.2335758 up 0.021031635 

BUB3 2.231718 down 0.032432362 

PCF11 2.2307165 down 0.04490722 

HN1 2.2256875 down 0.03548492 

RIOK3 2.222921 up 0.038666554 

CASP2 2.220837 down 0.01539818 

GLA 2.2199676 down 0.010494264 

HLA-DRB4 2.2194254 down 0.03787446 

DKK1 2.2190561 down 0.045311127 

TMEM44 2.2175806 down 0.045100342 

ZW10 2.2161803 down 0.03916896 

XRCC6 2.2144647 down 0.04572148 

C14orf145 2.211147 down 0.014434496 

SGK3 2.2002015 down 0.034964904 

CHEK2 2.198004 down 0.038062993 

CASP6 2.1969285 down 0.035803158 

BCL2L12 2.1960955 down 0.010667075 

FARP1 2.1941738 down 0.04572148 

NKX3-1 2.1937046 down 0.037676003 

WWC3 2.191947 up 0.042468995 

EXOSC9 2.190376 down 0.045371383 

TMC4 2.1902497 up 0.011046462 

ZFAND3 2.1838598 up 0.011498103 

DBNL 2.1774035 down 0.04314927 

ETV6 2.177263 down 0.019594423 

PSME2 2.1763046 down 0.022892712 

SFRS13A 2.1752353 down 0.04085896 

RAB23 2.17381 down 0.03704989 

SLC44A2 2.1724863 down 0.02172359 

ATP5G1 2.1699808 down 0.03327353 

UBE2G1 2.1683578 down 0.035698585 
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MAPKAP1 2.1665704 up 0.035803158 

ADAM19 2.1661768 down 0.0262167 

DEF8 2.1642501 down 0.048205905 

C6orf211 2.161218 down 0.035004396 

CSNK2A1P 2.1612003 up 0.022564188 

FNTB 2.159334 down 0.035539363 

TAF15 2.1502001 down 0.036608156 

TMEM118 2.1499128 down 0.009082349 

NDUFB6 2.1470752 down 0.025628919 

ARS2 2.143208 down 0.040173456 

PACSIN2 2.1422448 down 0.04085896 

STRN 2.1399987 up 0.019069718 

SLC19A2 2.1347253 up 0.019069718 

RHOD 2.131293 up 0.01970352 

NAPEPLD 2.1312628 down 0.043520328 

OCEL1 2.13092 down 0.013536799 

ZDHHC16 2.126818 down 0.018563876 

OAT 2.1267176 down 0.029269956 

CDC42EP1 2.1246893 up 0.047412697 

REPS2 2.1233356 up 0.033783652 

HES6 2.1211483 down 0.01220171 

SNX22 2.1201005 up 0.022727408 

PDXK 2.118017 down 0.018389799 

TIMM22 2.1122322 down 0.038435854 

C5orf37 2.1121442 down 0.048089013 

BAG3 2.1117723 down 0.023386316 

TPI1 2.111044 down 0.01403898 

BBC3 2.1042447 up 0.023780325 

ITGA3 2.1027858 up 0.027041782 

PLAUR 2.1024036 up 0.011175673 

SNRPB 2.1012537 down 0.010494264 

ATP6V1H 2.1004486 down 0.043520328 

TPI1 2.1002083 down 0.02172359 

IFITM3 2.0987191 down 0.03628379 

ZMYM5 2.0978823 up 0.013536799 

SNIP1 2.0973802 down 0.04862383 

TUBB3 2.0958116 down 0.038008302 

MLPH 2.0948637 up 0.04648964 
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ENTPD4 2.0944068 up 0.010216381 

TCEA1 2.0921814 up 0.030929556 

ZFYVE26 2.087797 down 0.020377327 

TSR2 2.0832922 down 0.009637909 

DHRS7B 2.0823681 down 0.018072816 

LOC728312 2.0762994 up 0.035803158 

SKA2 2.073603 down 0.04258914 

ITPRIP 2.0707595 up 0.04558073 

FBXO32 2.0692408 up 0.015676063 

LPAR5 2.0682282 down 0.033506017 

LOC651149 2.0681663 up 0.03507711 

ZNF35 2.0676754 down 0.04192966 

MAT2B 2.0664136 down 0.038417604 

CYB5D2 2.0642722 down 0.02087893 

CBX5 2.0594923 down 0.01855878 

KLHDC3 2.0590522 down 0.02294802 

IFITM2 2.0587075 down 0.04890672 

C22orf13 2.0554903 down 0.02149589 

DBI 2.0521846 down 0.041504502 

MGST3 2.0516443 down 0.014307831 

SASH1 2.0434108 down 0.038681243 

EDC4 2.040717 down 0.028050097 

MFSD3 2.0400789 down 0.04460674 

DYNLL2 2.0376124 down 0.018453302 

SGK 2.0367715 down 0.04572148 

FTHL2 2.032172 up 0.027835343 

BAIAP2L1 2.0290031 up 0.041504502 

CHRNB1 2.0283635 up 0.03302884 

ATP1B3 2.025569 down 0.045623463 

BLMH 2.0253823 down 0.04572148 

PSMD10 2.0248005 down 0.013816972 

TNIK 2.0239892 down 0.04189587 

TAP2 2.0234947 down 0.048075076 

SEMA6A 2.0221891 down 0.024458047 

LOC440093 2.0218225 down 0.011175673 

LOC644931 2.021412 up 0.029319767 

UNC84B 2.019348 down 0.04172988 

MDH1 2.0135365 down 0.04890672 
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ZSCAN2 2.013515 down 0.030118773 

MRPL22 2.0129333 down 0.04572148 

NUDT9 2.0094955 down 0.034736086 

LOC729009 2.0079455 up 0.01220171 

SLC2A4RG 2.0078657 down 0.013623286 

PPHLN1 2.0073416 down 0.028689677 

ALDH7A1 2.002995 down 0.036083378 

PGRMC1 1.9963276 down 0.04149974 

LOC148915 1.9961442 down 0.04234465 

EFNA4 1.99493 down 0.019096363 

PSME1 1.9928318 down 0.01177688 

NCLN 1.99048 down 0.019676114 

CHST7 1.9864012 down 0.029516006 

LOC652481 1.9851632 down 0.046232376 

HRK 1.9851315 up 0.01855878 

TRIM68 1.9847863 down 0.010494264 

IGSF3 1.983644 down 0.049429696 

ATP5J2 1.9833268 down 0.046232376 

ABCC5 1.9822242 down 0.047412697 

PEX11A 1.9792893 down 0.023196464 

DDX19A 1.9766625 down 0.04149974 

SMAP2 1.9763136 down 0.034900032 

LOC100133478 1.97512 up 0.035803158 

CASP3 1.9748405 down 0.043922964 

ASAP2 1.9712756 up 0.031774323 

EML2 1.967289 up 0.019069718 

SCPEP1 1.9661797 down 0.019069718 

ELF1 1.9656851 down 0.019293752 

RNF34 1.9648895 down 0.048220243 

LOC729926 1.9643978 up 0.048075076 

GEM 1.9630088 up 0.032760013 

SC5DL 1.9610842 up 0.039613925 

CLEC16A 1.9603151 down 0.024277335 

LOC643387 1.9598637 down 0.039572667 

DIAPH3 1.9592938 down 0.019237109 

DERA 1.9589968 down 0.042767514 

ADAR 1.9565771 down 0.032076553 

KATNB1 1.9565588 down 0.039991904 
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H3F3A 1.9549757 down 0.024098575 

CCDC85B 1.9528179 up 0.02484479 

SGK1 1.9523624 down 0.038199354 

ZNF185 1.950274 up 0.004092405 

PSMC3 1.9475496 down 0.032282915 

TSEN34 1.9454978 down 0.037592698 

TUBA1C 1.944842 down 0.019069718 

HDAC1 1.9447743 down 0.03608366 

RNU1-5 1.9445789 up 0.028689677 

RNU1-3 1.9426543 up 0.029448941 

RPS6KA2 1.9369316 down 0.019069718 

HMGCS1 1.9368217 down 0.034964904 

ELL3 1.9361682 down 0.033621464 

ADAR 1.9314932 down 0.030351898 

SLC25A44 1.9303552 down 0.045399822 

HSP90AA1 1.9300863 down 0.031863093 

DPM2 1.9272642 up 0.04703808 

PLOD1 1.9257163 down 0.01855878 

RUSC1 1.9256564 down 0.042912345 

SOD1 1.9251478 down 0.024163518 

IFI27L1 1.9247444 down 0.037676003 

PRDX4 1.9223267 down 0.045280136 

GLCE 1.9220053 down 0.026637582 

PSMA4 1.9218047 down 0.042421788 

TECR 1.920321 down 0.02483875 

CAST 1.9202244 up 0.03648406 

CLDN15 1.9196409 up 0.031236254 

GPR161 1.9190731 down 0.01855878 

FLOT2 1.9178506 down 0.020818258 

XYLT2 1.9157287 down 0.035803158 

ABHD14A 1.9103876 down 0.033800293 

EGLN2 1.9102005 down 0.03828878 

KIAA0586 1.9100363 down 0.045886032 

PHC2 1.9088957 up 0.018453302 

HIATL1 1.9074413 down 0.014711096 

SPA17 1.9050996 down 0.01739141 

G3BP1 1.902162 down 0.0296058 

VKORC1 1.8999367 down 0.009637909 
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C1orf25 1.8990179 down 0.034964904 

PDE6D 1.897796 down 0.013284133 

ATPIF1 1.8932486 down 0.005179285 

MKNK2 1.8894386 up 0.04559176 

UBE2L3 1.8875589 down 0.029084174 

IDH3A 1.8839631 down 0.035487957 

SLC25A4 1.8838784 down 0.041509036 

CISD2 1.8836389 down 0.036608156 

RIPK1 1.8824623 down 0.019049704 

BMPR2 1.8790548 down 0.04890672 

LOC440926 1.8740941 down 0.020055518 

PREP 1.8737358 down 0.04700748 

LOC653496 1.8737037 up 0.025082106 

FXYD5 1.8714827 up 0.019069718 

MEPCE 1.8698133 down 0.038724948 

H3F3A 1.8637253 down 0.030929556 

TEX264 1.8621624 down 0.028007232 

WDR23 1.8592465 down 0.042351622 

NAPRT1 1.8582858 down 0.045399822 

CGGBP1 1.8579247 up 0.04572148 

AMD1 1.8568666 down 0.036434762 

ATP6V0D1 1.8539879 down 0.041891284 

CNFN 1.8539863 down 0.04138328 

ZYX 1.852298 up 0.031902928 

SRP14 1.8513546 down 0.037190944 

ISCU 1.8497925 up 0.03475651 

PIN1 1.8469632 down 0.021618756 

CACNB3 1.8456475 down 0.025628919 

LOC100129086 1.8453916 down 0.03648406 

CALM3 1.8416986 down 0.011175673 

RAC2 1.8410966 up 0.02366577 

CENPB 1.8409839 down 0.030929556 

TOB1 1.8382611 down 0.018850883 

LOC730455 1.837833 down 0.026923697 

QDPR 1.8351489 down 0.040758733 

OPLAH 1.8348721 up 0.019069718 

FLJ22795 1.8317157 up 0.02580871 

NDUFA2 1.8295574 down 0.04172988 
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RNU1G2 1.8288412 up 0.024277335 

SLC16A3 1.8285453 down 0.006875412 

GLIS3 1.8258412 up 0.019069718 

CYB5A 1.824672 down 0.033363737 

POLR2F 1.8236839 down 0.046669953 

COL13A1 1.8227136 up 0.03916896 

GBA 1.822089 down 0.032528717 

KIAA1949 1.8189731 up 0.035803158 

TMEM2 1.8182248 down 0.012765218 

CCDC50 1.81404 up 0.04964428 

UROS 1.8129905 down 0.03641784 

POLR2A 1.8110342 down 0.025628919 

MAP3K6 1.8083137 down 0.02617137 

CTNS 1.8071579 down 0.045905516 

SUV420H1 1.7995939 up 0.043520328 

DCTN3 1.7970397 down 0.009637909 

OCIAD2 1.7968637 up 0.013018658 

PREI3 1.7961609 down 0.024277335 

GNPTG 1.7946063 down 0.010320948 

P2RY11 1.7942638 up 0.034964904 

LOC650152 1.7932342 down 0.020055518 

TRADD 1.7924784 down 0.027589478 

NSMCE2 1.7917875 down 0.041504502 

MDP1 1.7848517 down 0.04122609 

ZNF280D 1.7847052 up 0.048089013 

C1orf216 1.7832832 down 0.014965564 

HMOX2 1.7829376 down 0.039649706 

SIRPA 1.7759986 down 0.025361717 

RWDD3 1.773068 down 0.025856461 

LOC729082 1.7726059 down 0.014711096 

WBP5 1.7724512 down 0.038824502 

EFTUD1 1.7709858 up 0.046907336 

STRADB 1.7709445 down 0.019293752 

PMP22 1.7686049 down 0.04112573 

TMEM185A 1.7674834 down 0.019069718 

WFS1 1.765298 down 0.03953686 

NIPSNAP3A 1.760197 down 0.041504502 

ATG4A 1.7597799 down 0.02172359 
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LOC728640 1.7593037 down 0.033800293 

LOC729774 1.7577783 up 0.012480085 

PCNX 1.7560498 up 0.02172359 

HPCAL1 1.7557108 up 0.02149589 

LOC100133836 1.7540352 down 0.038008302 

UBFD1 1.7535197 up 0.018279748 

EEF1D 1.7474966 up 0.043665167 

LDHA 1.7449604 down 0.031863093 

LMNA 1.7432162 down 0.04149974 

C7orf49 1.7429291 down 0.046559807 

ATG4A 1.7429218 down 0.033800293 

LOC390530 1.7423959 up 0.016408468 

HIATL1 1.7405473 down 0.01739141 

IMPDH1 1.7402518 down 0.044806257 

C21orf70 1.7365458 up 0.013816972 

PACSIN2 1.7362001 down 0.045399822 

KIAA1715 1.7315495 down 0.04572148 

PHYH 1.7300463 down 0.045311127 

GSTM1 1.722758 down 0.028444633 

SEC22C 1.717465 down 0.009282365 

TNK2 1.7157543 up 0.02626058 

FAM32A 1.7148389 down 0.02149589 

C2orf44 1.7141751 down 0.028050097 

LOC389386 1.7067255 down 0.04280589 

FTSJD2 1.7043935 down 0.019069718 

DIAPH3 1.7025119 down 0.04558073 

C6orf85 1.7024462 down 0.04258914 

NAAA 1.698816 down 0.037892688 

BRMS1 1.6955105 down 0.034998596 

NEDD8 1.692254 down 0.034964904 

GTF2B 1.691369 down 0.0256847 

TMEM159 1.6909148 up 0.04234465 

ACTB 1.685421 up 0.046559807 

FAM3A 1.6838074 up 0.038724948 

TUBA1B 1.6823925 down 0.035803158 

METTL14 1.6821189 down 0.02315677 

LAMP2 1.6757674 down 0.028087284 

KHDRBS3 1.6752328 up 0.034964904 
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CMTM6 1.6746193 down 0.03543404 

GABARAPL1 1.673321 up 0.010494264 

ECHS1 1.6726921 down 0.038681243 

LYPD6B 1.6712608 up 0.042351622 

LMO2 1.6712217 down 0.033363737 

ETFB 1.6695048 down 0.02149589 

UBE2G1 1.6693809 down 0.046907336 

TMEM189 1.6670496 down 0.02483875 

ZNF252 1.6632276 down 0.034964904 

TAX1BP3 1.6610056 down 0.04700748 

ABCB9 1.6587981 down 0.034073226 

MXRA7 1.658485 down 0.02845703 

BCAS4 1.6581538 down 0.04890672 

LOC388564 1.658051 up 0.030849408 

SNORA64 1.6577507 up 0.043304022 

MAD2L1BP 1.6552869 down 0.026308447 

ATP1B1 1.6541446 down 0.044947993 

GAD1 1.6539686 down 0.02094271 

PNRC2 1.6527961 down 0.018237824 

VEZT 1.6502063 up 0.041891284 

MSRA 1.646211 up 0.02124337 

RQCD1 1.6448789 down 0.03681862 

DECR2 1.6445986 down 0.04890672 

NDUFB8 1.6441631 down 0.04757121 

HMGN2 1.6437201 down 0.049524475 

PPP1R14C 1.6436099 down 0.03327353 

RPRC1 1.6432465 down 0.019983377 

SLC25A4 1.6422108 down 0.04741928 

NLRX1 1.641721 down 0.010494264 

TGFA 1.6409804 up 0.038617827 

LOC100130886 1.6376448 down 0.013623286 

DDX19B 1.6360087 up 0.041422 

MEF2D 1.624607 up 0.045311127 

PAF1 1.6240042 down 0.04426554 

CCDC24 1.6222067 down 0.048940428 

MUL1 1.6185335 down 0.01539818 

TBC1D7 1.6142925 down 0.039536465 

CD83 1.6109163 down 0.019069718 
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TPRG1L 1.608728 down 0.010494264 

LOC642741 1.6081612 up 0.048075076 

ZNF689 1.6079979 down 0.016471576 

ELP4 1.6074173 down 0.045280136 

C1orf115 1.6056024 down 0.04189587 

BMS1 1.6043997 down 0.022892712 

CFL1 1.6040475 down 0.036571972 

TMEM62 1.6038047 down 0.037892688 

CASK 1.6011963 up 0.038008302 

GNPTAB 1.5999289 down 0.041739967 

PLEKHA9 1.5981113 down 0.036083378 

FTHL8 1.5955532 up 0.020449188 

CENTA1 1.5942328 up 0.034964904 

COMMD5 1.5939044 down 0.042165942 

GOLGA2 1.5899768 up 0.021618756 

LOC100132795 1.5886334 up 0.04572148 

CCDC102A 1.5863236 down 0.04122609 

PDHB 1.5831347 down 0.033128947 

LOC645683 1.581841 up 0.042892084 

ATP6V1E1 1.5796431 down 0.029319767 

TBC1D16 1.5787191 down 0.035261743 

PPP1R11 1.5751987 up 0.013018658 

LGMN 1.574408 down 0.023780325 

FSCN1 1.5721909 down 0.019069718 

RAB35 1.569938 down 0.009082349 

LOC648390 1.5693458 down 0.01855878 

VPS45 1.5667963 down 0.03079516 

TUBA1C 1.5666658 down 0.021565048 

RPS13 1.5656661 up 0.031863093 

ALKBH5 1.5653794 down 0.037460446 

HNRPK 1.565194 down 0.04062007 

DHRS11 1.5639763 down 0.040106535 

P4HA2 1.5597963 down 0.032420322 

ARL5A 1.5580226 down 0.04558073 

PABPC1 1.5570418 up 0.025980588 

ZNF787 1.5561702 up 0.030113384 

HEXB 1.5561432 down 0.02483875 

C16orf61 1.5559562 down 0.048075076 
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H2AFZ 1.5531687 down 0.046158504 

CDC42EP4 1.5473899 down 0.020003647 

PKNOX1 1.5436722 down 0.021712786 

EPDR1 1.5429212 down 0.04360388 

KLF9 1.542067 up 0.04410758 

ACADVL 1.5412841 up 0.019069718 

RHBDD2 1.5397365 down 0.047412697 

ACAA1 1.5385607 down 0.009282365 

GPRC5C 1.5385214 down 0.013383459 

SDHAF2 1.5351368 down 0.028689677 

SLC20A2 1.5345851 up 0.026221393 

LOC646463 1.5342712 up 0.010494264 

INPP1 1.5339279 up 0.038762942 

LAMP1 1.5339043 down 0.009637909 

PHGDH 1.5303309 up 0.048814435 

ERGIC1 1.5293468 down 0.023386316 

UBIAD1 1.5237821 up 0.048220243 

TPT1 1.5236621 up 0.009082349 

PHRF1 1.5231704 down 0.048495024 

PROS1 1.5167624 down 0.049254738 

SEMA4F 1.5162967 down 0.046504095 

LOC347544 1.5162748 up 0.04890672 

PANX2 1.5139613 up 0.04779945 

CSDA 1.508813 up 0.049368307 

LDHA 1.5085973 down 0.02015493 

RPL30 1.5084274 up 0.018674165 

UPRT 1.5080874 down 0.034152403 

H3F3A 1.5027332 down 0.027339572 

PRPH 1.5022211 up 0.02172359 

C20orf52 1.4999593 down 0.042351622 

GBA2 1.4979966 up 0.029516006 

TUBA1A 1.4933972 down 0.031565446 

RPL17 1.4923319 up 0.041313168 

ZGPAT 1.4895499 down 0.042912345 

HSD17B4 1.4895364 down 0.043722387 

ELOVL1 1.4836608 up 0.020105906 

ALG9 1.4830817 down 0.04863814 

PKP4 1.4825488 down 0.02766136 
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COBL 1.4820364 down 0.039610695 

ECD 1.4788536 down 0.02253104 

MORN2 1.4764404 down 0.04890672 

LOC255783 1.476252 up 0.03704989 

ASPSCR1 1.4718401 up 0.03477001 

LOC643863 1.4677135 up 0.029516006 

STX16 1.4670261 up 0.03475651 

LOC441073 1.465301 up 0.030929556 

GUSB 1.4643276 down 0.04149974 

ELF4 1.4624544 up 0.023234107 

CTGLF7 1.4564838 down 0.0470869 

TAX1BP1 1.4522345 up 0.032282915 

TAX1BP1 1.4510216 up 0.034872416 

RANGAP1 1.4508991 down 0.033774253 

LOC92755 1.4492096 down 0.04180456 

BTBD6 1.4482794 down 0.037521012 

PRNP 1.4452238 up 0.04572148 

GANAB 1.4389031 down 0.036608156 

MAP4K2 1.4388651 down 0.046504095 

CXCL16 1.4374852 down 0.04572148 

RNF121 1.4357687 down 0.025281847 

PSAP 1.435669 up 0.03648406 

LGMN 1.4257519 down 0.045986656 

COMT 1.4231652 down 0.035803158 

DGCR6 1.4203942 down 0.028689677 

LRWD1 1.4167193 down 0.035803158 

SLC29A4 1.4151039 down 0.013536799 

GALT 1.41286 down 0.035425775 

SH3GLB1 1.4049065 up 0.043520328 

LOC92755 1.4047092 down 0.024277335 

LOC284821 1.4040616 up 0.04572148 

LOC649548 1.4038401 up 0.04741928 

ARFGAP2 1.4032774 down 0.02172359 

RALY 1.4016869 down 0.04360388 

LOC653314 1.3994539 up 0.03885861 

BCDIN3D 1.3974133 down 0.03641784 

PSMC2 1.3968891 down 0.047412697 

AVPI1 1.3893579 down 0.028050097 
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RPS5 1.3850408 up 0.026583182 

LOC644039 1.3844177 up 0.046907336 

LOC647276 1.3819826 up 0.029269956 

DUSP22 1.3775834 down 0.046669953 

LOC642250 1.3760663 up 0.046232376 

ID1 1.3729534 down 0.018453302 

NPC2 1.3708401 down 0.036627322 

MPDU1 1.3695003 up 0.035698585 

LOC648000 1.3685265 up 0.028572276 

RPL3 1.3684282 up 0.034964904 

TSPAN9 1.3628871 down 0.04481828 

TCP11L1 1.3611637 up 0.028342376 

INSIG2 1.3609029 down 0.048909087 

LOC644464 1.3593427 up 0.046907336 

LOC284230 1.3557851 up 0.025687447 

RPL18A 1.3552552 up 0.028689677 

RPL19 1.3542988 up 0.031330235 

LOC728576 1.3495469 up 0.03302884 

ZMAT2 1.348114 down 0.010320948 

LOC100129141 1.3460437 up 0.008422944 

RPS11 1.3447782 up 0.030929556 

LOC389141 1.3445668 up 0.024631007 

LOC728244 1.3414055 up 0.011299649 

RPL24 1.3391696 up 0.01406658 

RPS3A 1.3343464 up 0.015757278 

FTHL7 1.3310994 up 0.016343728 

RPS6 1.3301564 up 0.019983377 

RPL9 1.3291724 up 0.020003647 

LOC653162 1.3236942 up 0.027314134 

LOC646294 1.3235198 up 0.013906971 

LOC100133931 1.3197521 up 0.035487957 

EEF1AL7 1.3143861 up 0.048075076 

LOC374395 1.3142676 down 0.038008302 

RPS15A 1.3134183 up 0.035261743 

RPS27 1.312983 up 0.037460446 

UBN1 1.3111799 down 0.02483875 

LOC653888 1.3096539 down 0.03408292 

CD63 1.3094215 down 0.03239546 
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CAP2 1.3072184 down 0.04479318 

STAMBP 1.3066535 up 0.04757001 

LOC391777 1.3058945 up 0.01970352 

LOC286444 1.305658 up 0.012055384 

RPL12 1.3037874 up 0.039560787 

LOC648729 1.301176 up 0.037892688 

LOC728517 1.2995949 up 0.020763682 

RPSA 1.2981296 up 0.04572148 

ELMO2 1.2964569 down 0.023234107 

EEF1A1 1.2954857 up 0.02154171 

IKBKG 1.2939274 down 0.029448941 

NUP50 1.2894573 down 0.04699871 

RPL11 1.2881604 up 0.033621464 

LOC646294 1.2842408 up 0.045311127 

PTPN1 1.2823339 down 0.02484479 

SKAP2 1.2796323 down 0.035803158 

LOC728553 1.2735767 up 0.02483875 

RPLP1 1.2705739 up 0.011175673 

LOC730754 1.2668962 up 0.035803158 

LOC642755 1.2655188 down 0.046504095 

DHX40 1.2649869 down 0.03354969 

UBA52 1.2643192 up 0.028532717 

LOC729402 1.2621671 up 0.040961143 

LOC728937 1.2617986 up 0.04430744 

SENP5 1.2579005 up 0.048089013 

LOC100129553 1.2569504 up 0.024166062 

RPS24 1.253881 up 0.042673428 

RPL18A 1.2423534 up 0.031541027 

RPL11 1.2410629 up 0.024631007 

LOC645899 1.2372204 up 0.013383459 

RNASEK 1.2300932 up 0.03426691 

LOC644464 1.2106695 up 0.012480085 

LOC100129158 1.2082447 up 0.04768977 
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Appendix 2 – Visualization and enrichment of live putative cancer stem cell populations 

following p53 inactivation or Bax deletion using non-toxic fluorescent dyes 
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Appendix 3 - Circulating Tumor Cells and Colorectal Cancer 
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Abstract   

The significance of circulating tumor cells (CTCs) has been discussed for more than a century. 

The advent of modern technology has allowed for more reliable detection of CTCs, and recent 

studies have provided compelling evidence that CTCs predict clinical response in metastatic 

colorectal cancer (mCRC). Combination of CTC analysis with independent prognostic factors has 

demonstrated powerful synergy in some studies. The ability of CTCs to predict metastasis and 

therapy-specific response has high potential clinical utility, with early studies showing promising 

results in colorectal cancer (CRC). Reliable CTC detection has also allowed for examination of 

tumor cell dissemination during surgery, and there appears to be a heavy dependence on the 

approach chosen. This review discusses the evidence for CTC significance, with particular focus 

on detection methods, novel markers, and clinical outcomes in CRC. Numerous opportunities 

exist for preclinical, clinical, and translational studies to explore molecular determinants within 

CTCs, as well as the value of CTCs in directing targeted therapeutics. 

Keywords  Circulating tumor cells - Colorectal cancer - CRC - Colon cancer - Rectal cancer -

 CTC detection - CTC enrichment - Stratification - Prognosis - Overall survival - Progression-free 

survival - Clinical response - Hepatic resection - Liver resection - Hepatic ablation - Hepatic 

metastasis - Liver metastasis - Cytokeratin - Tumor cell dissemination - Epithelial cell adhesion 

molecule - EpCAM - Survivin - Cetuximab -  KRAS 
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Introduction 

Colorectal cancer (CRC) remains the third most common cancer in the United States, with an 

overall 5-year survival rate of 64%, which has risen significantly in the past several decades [1]. 

The stage of diagnosis is the chief variable dictating this statistic. Nineteen percent of patients 

with CRC are diagnosed with an advanced stage, decreasing their 5-year survival rate to 11% [1]. 

This highlights the need for improved accessibility and reliability for diagnosis of CRC at earlier 

stages. Currently, reliable diagnostic techniques include colonoscopy, sigmoidoscopy, and CT, as 

well as the more costly CT virtual colonoscopy. Development of reliable diagnostic methods that 

are relatively inexpensive and less invasive may allow for earlier-stage diagnosis and significantly 

raise survival rates. Furthermore, identification of subgroups of patients who would benefit from 

adjuvant therapy is a high priority. This has been underscored within the past decade in CRC by 

patient response to cetuximab being determined by KRAS mutational status of the tumor [2]. In 

advanced-stage disease, the availability of circulating tumor cells (CTCs) may allow for better 

disease monitoring, especially in patients with metastatic CRC (mCRC) who do not have any 

measurable increase in carcinoembryonic antigen (CEA) or other markers. 

The first clinical suggestion that metastasis might arise from primary tumor cells by intravasation 

has been traced to postmortem clinical observations by Ashworth [3] in 1869. This idea regained 

attention almost a century later when Engell [4] found evidence of CTCs in live cancer patients. 

However, follow-up studies by Engell [5] and others [6] found no correlation between survival and 

the number of tumor cells in the blood, likely because of poor cytologic criterion largely founded 

on cell morphology and size. Technological advances in subsequent years have increased the 

ability to accurately and reliably detect CTCs. Detection technology now includes reverse 

transcriptase polymerase chain reaction (RT-PCR), immunomagnetic separation, microchips, and 

several others that have been reviewed recently [7 •]. 

The CellSearch System (Veridex LLC, Raritan, NJ) gained approval from the US Food and Drug 

Administration (FDA) in 2004 for metastatic breast cancer and is now also approved for 
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metastatic prostate and colorectal cancer. This remains the only CTC detection method to have 

received FDA approval. Under this detection method, CTCs must possess the following 

properties: a round to oval shape by light scatter, an evident nucleus by 4′,6-diamidino-2-

phenylindole (DAPI) staining, epithelial cell adhesion molecule positivity (EpCAM+), and 

cytokeratin (CK)-8+, -18+, -19+, and CD45− by immunofluorescence. This method is more efficient 

in sample size and processing time than other CTC enrichment methods, except for the CTC 

chip. However, it is limited by its requirement of EpCAM expression and therefore potentiates 

false-negative results. Nevertheless, this technology has allowed for reliable detection of CTCs 

(approximately 80–85% recovery of spiked samples) [8, 9]. Studies using this technology have 

established CTCs as an independent prognostic indicator in metastatic breast cancer [9, 10], 

castration-resistant prostate cancer [11], and mCRC [12••]. This review summarizes recent 

findings regarding CTCs in the clinic as a prognostic factor, novel efforts to improve CTC 

identification and enumeration, and the effect of resection on CTCs in the context of CRC. 

Figure 1 outlines CTC detection techniques and identification markers along with a putative CTC 

schematic for CRC. In the realm of preclinical and translational research, CTCs offer an exciting 

opportunity to explore new technologies for the recovery of live metastasis-initiating cells. The 

introduction of molecular characterization is expected to lead to important advances of relevance 

to prognostication and personalized therapy. 
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Fig. 1 Circulating tumor cell (CTC) generation, identification, and detection. CTCs are shed from 

the primary tumor and intravasate by several possible mechanisms: direct shedding into existing 

blood vessels(A), mechanical disruption (eg, resection; [B]), or shedding into angiogenic 

capillaries (C). CTCs then travel through the bloodstream (D) and later extravasate at a potential 

site of metastasis (E). CTCs can be detected in peripheral blood by collection (F) using a variety 

of methods (G). Published markers for CTCs in colorectal cancer are listed (H). CellSearch is a 

registered trademark of Veridex LLC, Raritan, NJ. qRT-PCR, quantitative reverse transcriptase 

polymerase chain reaction 

 

 

Prognostic Value in the Clinic 

An early study by Sastre et al. [13] found the CellSearch system could identify CTCs in CRC 

patients and that CTC positivity correlated with disease stage (P  =  0.005). No significant 
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correlation was found between tumor location, grade of differentiation, CEA levels, or lactate 

dehydrogenase (LDH) levels. A meta-analysis of nine studies conducted between 1998 and 2006 

showed that CTC-positive patients, as detected by RT-PCR methods in blood samples collected 

from the tumor’s draining vein, correlated with lymph node (LN)-positive patients (50%) versus 

LN-negative patients (21%) [14]. Furthermore, hepatic metastasis was found more often in CTC-

positive patients (21%) than in CTC-negative patients (8%). These early reports demonstrated 

the feasibility and potential prognostic value of CTCs in CRC, allowing for larger-scale studies 

(Table 1). 

 

Table 1 Clinical studies evaluating circulating tumor cells as a prognostic tool 

Study Inclusion 
criteria 

Patients,
n 

CTC 
enumeration 
method 

CTC 
positive 
threshold 

Parameters 
examined 

Main 
conclusion 

Cohen et al. 
[12••] 

mCRC 
initiating first-
, second-, or 
third-line 
therapy with 
an EGFR 
inhibitor 

430 CellSearcha ≥3/7.5 mL 

Line of 
therapy, 
tumor type, 
ECOG PS, 
site of 
metastasis, 
CTC 
evaluation 
time point, 
PFS, OS 

CTC number is 
an independent 
predictor of PFS 
and OS in 
mCRC 

Cohen et al. 
[15••] 

mCRC 
initiating first-
, second-, or 
third-line 
therapy with 
an EGFR 
inhibitor 

430 CellSearch ≥3/7.5 mL 

Line of 
therapy, 
therapy 
choice, age, 
ECOG PS, 
PFS, OS 

CTC prediction 
of PFS and OS 
is stronger in 
some treatment 
groups and 
subtypes 

Garrigós et 
al. [17•] 

Stage II or III 
CRC 
undergoing 
curative 
resection 

16 

Immunomagn
etic beads or 
centrifugation 
enrichment 
followed by 
RT-PCR or 
FC 

– 
Detection 
method, 
relapse 

Immunomagneti
c enrichment 
and FC are the 
most efficient 
CTC detection 
methods; 
relapse in CRC 
may be 
correlated with 
CTC level 

Katsuno et 
al. [14] 

Curative 
surgery for 
CRC, blood 
collection 
from venous 

646 RT-PCR – 

LN, disease 
stage, 
hepatic 
metastasis 

CTC levels 
correlate to LN 
positivity and 
disease stage 
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Study Inclusion 
criteria 

Patients,
n 

CTC 
enumeration 
method 

CTC 
positive 
threshold 

Parameters 
examined 

Main 
conclusion 

drainage of 
tumor at time 
of surgery 

Papavasilio
u et al. [33] 
•] 

CRC with 
hepatic 
metastases 
treatable with 
liver 
resection or 
tumor 
ablation, 
intact primary 
tumor 

20 CellSearch ≥3/7.5 mL 

Fong score, 
disease 
status, liver 
procedure, 
PFS, OS 

Postoperative 
CTC may 
predict 
prognosis 

Sastre et al. 
[13] 

CRC, no 
preoperative 
chemo- or 
radiotherapy 

127 CellSearch ≥3/7.5 mL 

Disease 
stage, tumor 
location, 
differentiation
, CEA and 
LDH levels 

Reproducible 
CTC levels but 
correlated only 
with disease 
stage 

Schmidt et 
al. [23] 

>18 years 
old, eligible 
for hepatic 
resection by 
conventional 
and anterior 
approaches, 
no 
extrahepatic 
disease, liver 
cirrhosis, or 
positive LN 

150 CK20 RT-
PCR – 

Resection 
approach, 
OS, other 
parameters 
related to the 
surgery 

Ongoing; 
primary aim is to 
conclude on 
tumor cell 
dissemination 
by conventional 
vs anterior 
hepatic 
resection 

Tol et al. 
[16] 

CRC with 
irresectable 
distant 
metastasis, 
≥1 
measurable 
disease 
parameter, 
WHO PS of 0 
or 1, 
adequate 
organ 
functions 

467 CellSearch ≥3/7.5 mL 

CTC time 
point, CT 
imaging, 
PFS, OS 

CTC number is 
an independent 
predictor of PFS 
and OS in 
mCRC; 
combination 
with CT imaging 
predicts OS 
more strongly 

Tralhão et 
al. [34] CRC 40 FC (CD45–

,CK+) – 
CTC levels 
influenced by 
surgery 

No significant 
difference in 
CTC by surgical 
intervention 
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CEA carcinoembryonic antigen, CK cytokine, CRC colorectal cancer, CTC circulating tumor 

cell, ECOG PS Eastern Cooperative Oncology Group performance status, EGFR epidermal 

growth factor receptor,FC flow cytometry, mCRC metastatic CRC, EGFR epidermal growth factor 

receptor, LDH lactate dehydrogenase, LN lymph node, OS overall survival, PFS progression-free 

survival, RT-PCR reverse transcriptase polymerase chain reaction, WHO PS World Health 

Organization performance status 

aRegistered trademark of Veridex LLC, Raritan, NJ 

Cohen et al. [15••] published one of the largest clinical studies of CTCs in mCRC involving 430 

mCRC patients at 55 clinical centers in the United Kingdom, the Netherlands, and the United 

States. Patients were qualified for the study if initiating a new first-, second-, or third-line (with an 

epidermal growth factor receptor inhibitor) systemic therapy. Patients had peripheral blood 

collected before treatment initiation and at four time points after treatment initiation. For analysis, 

patients were grouped into favorable (<3 CTCs/7.5 mL blood) or unfavorable (≥3 CTCs/7.5 mL 

blood). 

The study showed that median progression-free survival (PFS) and overall survival (OS) rates 

were approximately twice as high for patients in the favorable group based on low CTCs (PFS, 

7.9 mo; OS, 18.5 mo) relative to the unfavorable group with elevated CTCs (PFS, 4.5 mo; OS, 

9.4 mo) as determined at baseline. Importantly, this significance held to a similar extent when 

grouping was assigned by CTC count at any evaluated time point. Regardless of change to 

favorable or unfavorable, patients who switched their group classification 3 to 5 weeks after 

treatment initiation had a median OS between those of the baseline unfavorable and favorable 

groups. However, these patients maintained a PFS very close to the favorable group. A 

multivariate analysis of several significant factors (eg, CTC count, age, line of therapy) found that 

CTC number was a strong independent predictor of PFS and OS (P  ≤  0.001) regardless of 

assessment time point. Interestingly, the study found a significant prognostic synergy between 

patient grouping by imaging response and CTCs. If patients continued to have elevated CTC 

counts for prolonged periods after therapy, this was associated with a worse prognosis. 
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Slightly more than a year later, Cohen et al. [15••] published a follow-up study with extended 

follow-up time points and expanded analyses using the same grouping described earlier [12 ••]. 

The difference in PFS and OS between favorable and unfavorable groups was more pronounced 

in patients receiving first-line therapy than in second- and third-line therapy patients. OS was 

prolonged in the favorable group relative to the unfavorable group regardless of whether they 

were receiving oxaliplatin, bevacizumab, or irinotecan, but PFS was increased only in the latter. 

The change in OS with baseline CTCs seems independent of age, and the change in PFS is not 

statistically different between CTC groups with patients older or younger than 65 years old. 

Eastern Cooperative Oncology Group performance status (ECOG PS) had no large effect on the 

significant difference of OS in the favorable and unfavorable CTC groups. However, the 

difference in PFS between favorable and unfavorable CTC groups was insignificant in patients 

with an ECOG PS of 1 or 2. An updated multivariate analysis reconfirmed baseline CTC number 

as an independent factor in PFS and even more so in OS. 

Together, the two analyses of these mCRC patients by Cohen et al. [12••, 15••] demonstrate that 

CTCs correlate significantly with PFS, and even more so OS, after treatment or at baseline, 

regardless of age, previous treatment, or disease stage. These data strongly argue for the use of 

CTCs as an independent prognostic factor in mCRC that may be combined with other factors to 

improve assessment, as demonstrated with radiographic imaging in the earlier publication. 

The largest published mCRC CTC study to date involved 467 patients who received capecitabine, 

oxaliplatin, and bevacizumab as first-line therapy [16]. Half the patients also received cetuximab. 

Twenty-nine percent of patients had high CTCs (≥3 CTCs/75. mL blood) and were also more 

likely to have stage IV disease, to not have received adjuvant chemotherapy, and to have 

abnormal serum LDH levels relative to other enrolled patients. Patients with hepatic metastasis 

only or metastasis to additional organs had elevated CTC levels (33%) relative to other patients 

(12%). The study confirmed previous findings by Cohen et al. [12••, 15••] that higher CTC count 

at baseline or 1 to 2 weeks after treatment correlated with prolonged PFS and OS in both 

treatment groups. 



www.manaraa.com

206 

Patients who converted from the low- to high-CTC group between baseline and a follow-up time 

point had significantly different median PFS and OS rates, between those of consistently high- 

and low-CTC patients. Previously, Cohen et al. [12••, 15••] published data demonstrating that 

patients meeting this criterion had a median PFS similar to that of consistently CTC-negative 

patients. This difference might be the result of slight differences in CTC group classification time 

point or, more likely, patient treatment history. CTC count after 1 to 2 weeks of treatment 

appeared to have stronger-than-expected correlations with response by CT compared with 

baseline CTC count. In support of findings by Cohen et al. [12••, 15••], CTC level and Response 

Evaluation Criteria in Solid Tumors (RECIST) classification by imaging (eg, CT) synergistically 

predicted OS. 

The possibility that CTCs might predict metastasis before detection by conventional methods has 

considerable impetus. Garrigós et al. [17 •] conducted a small-scale study to measure CTCs in 16 

patients with stage III and IV CRC. The authors used immunomagnetic beads for EpCAM and 

subsequent flow cytometry to identify CD45− and CK7+ or CK8+ cells, as it was more sensitive at 

CTC detection and enumeration than other available methods. The authors of this study did not 

examine CellSearch for their comparison. Two of the 16 patients had tumor relapse following 

resection and had elevated CTCs before relapse relative to the patients without tumor relapse. 

The use of CTCs as a predictor of metastasis would be a powerful clinical tool; therefore, a study 

with standardized CTC detection methods and a large sample size is warranted. 

 

The Search for New Markers 

Although effort is being made to validate current CTC identification technology, several novel 

markers have been identified (Table 2). Markers of therapy-specific response are very useful for 

adjuvant therapy stratification. For instance, Ronzoni et al. [18] evaluated response to 

bevacizumab in CRC patients and the utility of circulating endothelial cells (CECs) and 

endothelial progenitor cells as response predictors. Resting CECs, defined as CD45−, CD146+, 

CD34+, and CD106−, had the greatest enrichment in CRC patients relative to benign controls. 
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Baseline CTCs had a strong correlation with response and PFS. No significant changes were 

found in the evaluated cell levels throughout treatment. 

 

Table 2 Novel methods for circulating tumor cell identification and main conclusion(s) 

Study CTC enumeration method Main conclusion 

Antolovic et 
al. [31•] 

Immunomagnetic enrichment and CK20 
RT-PCR 

The clone used as an antibody for 
EpCAM-based enrichment alters results 
significantly 

Chen et al. 
[28] KRAS membrane array 

KRAS membrane array is sensitive and 
specific when used on CRC blood 
samples. 

Findeisen et 
al. [19] 346 candidate genes SERPINB5 expression is elevated in 

CRC blood 
Gervasoni et 
al. [25] CK20, CK19, CEA, and GCC RT-PCR CTCs can be predicted by CK20, CK19, 

CEA, and GCC together 

Königsberg 
et al. [27] 

MACS HEA 
MicroBeads,a RosetteSep,b density 
centrifugation 

EpCAM-coupled antibodies are a better 
detection method than cytometric 
methods 

Konyanagi et 
al. [24] 

CK20 IHC and c-MET, MAGE-A3, 
hTERT, and GalNAc-T qRT-PCR 

CK20 IHC and qRT-PCR strongly 
predict DFS 

Shen et al. 
[26] Survivin, CK20, CEA qRT-PCR CK20 and CEA mRNA correlates with 

disease stage and LN 

Uen et al. 
[32] hTERT, CK19, CK20, and CEA RT-PCR 

Persistently elevated CTCs, LN, and 
vascular invasion are independent 
predictors of postoperative relapse 

Wong et al. 
[22] 

CK20 positive, cell morphology, and cell 
size 

CK20 may be detected in CRC patients 
and is associated with disease status 
and LN 

Yang et al. 
[30] KRAS membrane array Can detect down to three colon tumor 

cells/mL of blood with membrane array 

Yen et al. 
[29•] KRAS membrane array 

KRAS mutation status in CTCs predicts 
response to cetuximab and affects PFS 
and OS 

Yie et al. [20] Survivin RT-PCR ELISA Survivin is elevated in CRCs and 
correlated with metastasis 

CEA carcinoembryonic antigen, CK cytokine, CRC colorectal cancer, CTC circulating tumor 

cell, DFS disease-free survival, ELISA enzyme-linked immunosorbent assay, EpCAM epithelial 

cell adhesion molecule, GalNAc-T β-1,4-N-acetylgalactosaminyltransferase, GCC guanylyl 

cyclase C, hTERT human telomerase reverse transcriptase, IHC immunohistochemistry, LN 

lymph node, MAGE-A3 melanoma-associated antigen 3, OS overall survival, PFS progression-
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free survival, qRT-PCR quantitative RT-PCR, RT-PCR reverse transcriptase polymerase chain 

reaction 

aRegistered trademark of Miltenyi Biotec, Auburn, CA 

bRegistered trademark of StemCell Technologies, Vancouver, Canada 

 

Substantial evidence is emerging for detection of upregulated mRNA in patient blood samples 

and its correlation with CTCs and prognosis. Findeisen et al. [19] screened 346 genes that are 

upregulated and found SERPINB5 to be significantly upregulated in patients with elevated CTCs 

compared with benign controls. This elevation was detected in cell-spiking experiments and 

validated in patient blood samples. Future work with SERPINB5 should determine whether it is 

differentially expressed in mCRC and if any prognostic value can be gained. Yie et al. [20] have 

shown that survivin mRNA detected by RT-PCR enzyme-linked immunosorbent assay was 

correlated with the disease stage of CRC patients. Approximately half the CRC patients tested 

positive for survivin expression, and half of these patients eventually suffered relapse. Survivin 

expression was also shown to be a better risk factor (P  =  0.048) for relapse than age, gender, 

disease stage, tumor penetration, nodal status, or plasma CEA. 

Another study, by Wong et al. [21], found CK20 expression in LNs and blood of CRC patients. A 

follow-up study found that CK20-positive CTCs in CRC patients predicted metastasis (P  <  0.001) 

and had a highly significant impact on OS (P  <  0.0001) [22]. A randomized trial is being 

conducted to detect CTC levels by RT-PCR for CK20 and the impact of conventional versus 

anterior hepatic resection in mCRC patients [23]. The consequences of resection technique on 

tumor cell dissemination are discussed later in this review. 

Koyanagi et al. [24] found that for LNs, CK immunohistochemistry (IHC; 30%) or measurement of 

CK blood levels by quantitative RT-PCR (qRT-PCR; 60%) was superior to conventional 

pathologic LN examination by hematoxylin and eosin staining (17%) in detecting relapse in 12 

relapsed CRC patients. CK IHC and qRT-PCR together identified 70% of relapsed patients. 
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Combining mRNA markers for c-MET, melanoma-associated antigen 3 (MAGE-A3), β-1,4-N-

acetylgalactosaminyltransferase (GalNAc-T), and CK20 showed a significant difference in PFS 

(P  =  0.014), but not OS, in the same patients. 

Because of the overwhelming diversity within tumors, it is unlikely that any single marker will yield 

optimal identification fidelity. Gervasoni et al. [25] published a preliminary report on the use of 

molecular signatures by RT-PCR to identify patients using epithelial-specific genes. CK20, CK19, 

CEA, and guanylyl cyclase G (CGG) were shown to identify cancer patients versus healthy 

patients. Shen et al. [26] showed that CK20, survivin, and CEA levels were all independently 

higher by qRT-PCR in CRC patients versus normal controls. Moreover, all Dukes stages were 

also found to correlate with survivin (P  <  0.001), CK20 (P  =  0.011), or CEA (P  <  0.001) mRNA 

levels. Although these markers had increased sensitivity when combined, no data were shown for 

the markers in combination and their ability to predict any clinical outcomes. Future studies 

aiming to identify novel markers should corroborate the clinical significance using conventional 

detection methods (eg, CellSearch) and test in combination with conventional methods. 

 

Improving CTC Detection Methods 

With the availability of several methods for identification and enumeration of CTCs, investigators 

are faced with a difficult choice. Many methods that have higher sensitivity sacrifice accuracy and 

precision. Königsberg et al. [27] compared different nonautomated detection methods for CTC 

enrichment, including two density centrifugation methods, a density centrifugation and antibody-

based method, and an immunomagnetic technique. Immunomagnetic enrichment using MACS 

HEA Microbeads (Miltenyi Biotec, Auburn, CA) that bind EpCAM had a superior recovery rate 

than the other methods in cell-spiking experiments and patient samples. CTC levels of ≥1 CTCs 

per 7.5 mL of blood were significantly correlated with PFS but not with OS. This disparity with 

other findings might be a result of shorter follow-up time points, a difference in CTC group 
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threshold numbers, a difference in detection methods, or patient composition, as this study 

included mCRC patients without specifying other factors. 

A high-throughput method for detection of KRAS mutations by a membrane array has been 

developed [28] and recently applied in the clinic to mCRC patients treated with cetuximab and 

FOLFOX4 (oxaliplatin + leucovorin + fluorouracil) or FOLFIRI (leucovorin + fluorouracil + 

irinotecan) [29 •]. This technique is carried out by amplification of total RNA from peripheral blood, 

cDNA synthesis, hybridization to membrane arrays, and quantification of resultant spot 

intensities. A strong correlation existed between KRAS mutation status in the tumor and that of 

peripheral blood samples using the membrane array, with high sensitivity (84.8%) and high 

specificity (95.3%). As expected, mutant KRAS in primary tumor samples correlated strongly with 

lack of response to cetuximab. This strong response correlation was extended to 

mutant KRAS detection in peripheral blood by the membrane array (n  =  86; P  <  0.0001). A 

multivariate analysis yielded a strong KRAS mutational status correlation with PFS and OS if 

detected in the tumor or in peripheral blood (n  =  86; P  <  0.0001). 

This technique has been updated to utilize chemiluminescence to increase sensitivity [30]. 

Although the clinical study suggests a strong correlation with KRAS mutation status in the primary 

tumor and the peripheral blood, it cannot conclude that CTCs are the source. This is the case for 

all purely mRNA-based detection methods. Future experiments should determine whether the 

source of mutant KRAS in the peripheral blood is truly CTCs but may be complicated by 

limitations of current CTC enrichment methods. On the contrary, this may be an advantage, as 

this technique does not rely on selection techniques based on markers commonly used for CTC 

enrichment (eg, EpCAM). 

Antolovic et al. [31 •] recently reported on the importance of the chosen EpCAM epitope in 

antibody-based selection and its impact on CTC count. The study showed that the use of two 

different antibodies resulted in disparate CTC detection by a CK20 RT-PCR assay. Although RT-

PCR may be more sensitive to error than multiparametric detection systems such as CellSearch, 
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EpCAM remains a widely used, exclusive selection factor in isolating CTCs. As such, evaluation 

of the significance of CTC detection dependency on EpCAM epitopes is warranted. 

 

The Impact of Resection on CTCs 

Disturbing tumor cells mechanically and causing shedding of tumor cells during resection have 

long been a concern. The question of whether these tumor cells remain viable and what they 

subsequently may do is still largely unanswered. CTC detection has allowed investigators to 

begin to reliably quantify this phenomenon. Uen et al. [32] published a large-scale study involving 

stage III and IV CRC patients undergoing curative resection. This study found that postoperative 

relapse was strongly correlated with LN metastases (P  <  0.001), as well as CTC level if elevated 

at pre- and postoperative time points. Pre- and postoperative CTC levels were not analyzed 

separately as a predictor of relapse, but depth of invasion (P  =  0.032), vascular invasion 

(P  =  0.001), and perineural invasion (P  =  0.013) were also found to predict relapse, although to a 

lesser extent. It should be noted that this study used a membrane array to detect human 

telomerase reverse transcriptase, CK19, CK20, and CEA mRNA levels for detecting CTCs. 

Hepatic metastases in CRC were explored in a 20-patient study monitoring CRC patients before, 

during, and after resection or radiofrequency ablation (RFA) [33 •]. This study found that 

preoperative and intraoperative CTC levels did not predict OS. Postoperative levels were 

predictive of OS and disease-free survival. It should be noted that the statistical analysis was 

performed using absolute CTC levels in contrast to the common categorical analysis by a 

threshold number of CTCs. An important observation is the sevenfold increase in intraoperative 

CTCs compared with preoperative levels. This enrichment was found to be in patients who 

underwent RFA (mean, 27 cells/7.5 mL blood) rather than resection (mean, 3 cells/7.5 mL blood). 

This finding is an important consideration in selecting a hepatic resection procedure in light of 

tumor dissemination. A lack of significant elevated CTC levels during resection also was reported 

by another study in patients with primary CRC or mCRC [34]. It should be noted that this study 
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analyzed CTCs by flow cytometry and did not use EpCAM as a selection criterion. Future studies 

should examine the clinical impact of significant tumor cell dissemination by RFA. As a whole, the 

literature strongly suggests that the choice of resection method plays a key role in tumor cell 

dissemination, but the consequence of this is unclear. 

 

Conclusions 

In the 1950s, CTC levels were observed in equal number in cancer patients with or without 

relapse and deemed useless as a prognostic factor. Today, CTC detection by CellSearch is FDA 

approved for patient prognosis in metastatic breast, prostate, or colorectal cancer. Clearly, future 

advancements in accurate detection of CTCs will be essential in assessing the utility of CTC 

levels as a patient prognostic factor. Detailed analyses of isolated CTCs need to be conducted to 

elucidate what properties are unique to these cells. For instance, do CTCs express epithelial–

mesenchymal transition markers (eg, vimentin, twist, fibronectin)? Are the CTCs detected viable? 

Isolation of viable CTCs should be pursued for ex vivo analysis and in vivo investigation in 

animals models. Identification of CTC-specific properties may provide opportunities for 

therapeutic exploitation. For instance, insight could be gained from comparisons of disseminated 

tumor cells to intrinsic CTCs (eg, expression profiling). As for surgical method decisions in mCRC 

involving the liver, it is clear that RFA increases CTCs during the procedure. Data must be 

gathered on whether the disseminated tumor cells change clinical outcome. 

The relationship of cancer stem cells (CSCs) with CTCs is entirely unclear at this point. In theory, 

CTCs must have tumor-initiating properties of CSCs but have additional intravasation and 

extravasation properties. Preliminary experiments should focus on the overlap with markers of 

CSCs and their levels in CTCs (ie, CD133+). A recent finding indicates that a 

CD26+subpopulation of CD133+ CRC cells have unique metastatic potential in CRCs [35]. More 

specifically, this subpopulation exclusively forms liver metastasis when injected into the cecal wall 
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of mice. Furthermore, preliminary data from small groups of patients suggest that this marker may 

be useful in predicting metastasis. 

Future efforts to improve CTC detection should explore the possibility of low EpCAM expression 

by CTCs, as this has been noted in epithelial–mesenchymal transitions, a process that CTCs may 

undergo during early stages of metastasis. The two large-scale patient studies by Cohen et al. 

[12••, 15••] and Tol et al. [16] firmly place CTCs as an indicator of prognosis in mCRC. 

Examination of treatment regimen on CTC levels and the response of patients should be further 

explored to index therapeutic effects. Efforts to explore the role of CTCs in prediction of 

metastasis, as initiated by Garrigós et al. [17•], are highly warranted. Proof of CTCs as an 

indicator of future metastasis would be an extremely valuable tool in the clinic. With the available 

clinical data, CTC level should be incorporated with other traditional prognostic indicators to 

provide the best assessment possible for therapy stratification. The proven utility of CTCs needs 

to be integrated into clinics rather than viewed as a work in progress. In the spirit of Stephen 

Paget’s metastasis model [36], which prevails more than a century later [37], with much effort we 

have found the “seeds”; now let us go to the field and stop them from being planted in the “soil.” 
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ABSTRACT 

The number of circulating tumor cells (CTCs) in the peripheral blood of metastatic breast 

cancer patients is now an established prognostic marker. While the central nervous system is a 

common site of metastasis in breast cancer, the standard marker for disease progression in this 

setting is cerebrospinal fluid (CSF) cytology. However, the significance of CSF cytology is 

unclear, requires large sample size, is insensitive and subjective, and sometimes yields equivocal 

results. Here, we report the detection of breast cancer cells in CSF using molecular markers by 

adapting the CellSearch system (Veridex). We used this platform to isolate and enumerate breast 

cancer cells in CSF of breast cancer patients with central nervous system (CNS) metastases. The 

number of CSF tumor cells correlated with tumor response to chemotherapy and were 

dynamically associated with disease burden. This CSF tumor cell detection method provides a 

semi-automated molecular analysis that vastly improves the sensitivity, reliability, objectivity, and 

accuracy of detecting CSF tumor cells compared to CSF cytology. CSF tumor cells may serve as 

a marker of disease progression and early-stage brain metastasis in breast cancer and potentiate 

further molecular analysis to elucidate the biology and significance of tumor cells in the CSF. 
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INTRODUCTION 

In the modern era of oncology, cancer-related mortality is associated with metastatic spread 

rather than the voraciousness of the primary tumor [4]. Tumor seeding in secondary tissues 

therefore presents a major challenge in cancer treatment [5]. Therapeutic strategies are often 

focused on tumor containment in lieu of concerns for tumor cell dissemination into surrounding 

structures. The enumeration of circulating tumor cells (CTCs) can monitor the metastatic potential 

of some solid tumors, relate these cells to patient survival, and provide a surrogate marker of 

treatment response [6, 7]. Giving rise to the “liquid biopsy”, peripheral blood can be analyzed for 

the presence of CTCs using a range of techniques that are in various stages of development [8]. 

The CellSearch system is a CTC detection method that utilizes several molecular parameters to 

isolate CTCs: immunomagnetic enrichment for epithelial cell adhesion molecule (EpCAM), 

nuclear staining with 4’, 6-diamidino-2-phenylindole (DAPI), and immunofluorescence detection of 

cytokeratin and CD45 [9]. Due to its demonstrated reliability and prognostic value, the CellSearch 

system is the only CTC detection platform approved by the US Food and Drug Administration 

(FDA) for the enumeration of CTCs in metastatic colorectal, prostate, and breast cancers. 

The cerebrospinal fluid (CSF) is an important, unique, and poorly understood compartment 

of the central nervous system (CNS). CSF often acts as a biologic sump for neurons and glia and 

is continuously produced and recycled much like blood or lymph, though never filtered. Cells from 

solid tumors can infiltrate the CSF by several mechanisms including blood-brain barrier 

penetration by circulating cells, directly through tumor extension along Vichow-Robin spaces, or 

through patterned secondary structures of Scherer [10, 11]. Tumor cells within the CSF represent 

a special subpopulation of malignant cells that have proven their metastatic potential in peripheral 

blood and may be a source of a number of devastating neurologic sequelae. Current methods for 

examining the CSF involve pathological identification of abnormal cells by Wright-Giemsa stain. 

With this method there is no quantification or characterization of these cells and clinicians must 

make judgments on the binary presence or absence of malignant cells as determined by cytology 
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[12]. This is the gold standard but lacks molecular analysis and sensitivity, often requiring repeat 

testing or high volume analysis [13]. 

The prognosis and therapeutic stratification of patients with CNS metastases is currently 

based on the integration of histopathologic data, the appearance and severity of neurologic 

symptoms, and magnetic resonance imaging (MRI) of the neuroaxis [14]. To overcome limitations 

of currently available clinical parameters, we developed a reliable detection method to enumerate 

CSF tumor cells (CSFTCs) using molecular tumor cell markers by adapting the CellSearch 

system. This report describes this detection method and demonstrates the feasibility and 

significance of CTC detection in a pilot study of metastatic breast cancer patients with CNS 

metastases. 

RESULTS 

Selective detection of breast cancer cells 

One of the diagnostic criteria for CTCs as defined by the CellSearch system is to be 

EpCAM+. We found that human glioblastoma cells do not express EpCAM contrary to breast 

cancer cells as expected (Figure 1A). Accordingly, spiking these cultured cells into normal human 

blood revealed that the CellSearch system detects breast cancer cells but not glioblastoma cells 

(Figure 1B-C). This suggests that the CellSearch system could be used to detect cancer cells in 

the CSF that are not of glial origin and therefore those with metastatic potential to the CNS. 
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Figure 1: Detection by the CellSearch system of breast cancer cells but not 

glioblastoma cells present in human blood. (A) Western blot analysis of EpCAM expression in 

SF767 human glioblastoma cells and SKBR3 human breast cancer cells. Ran shown as a loading 

control. (B) Number of CTCs enumerated by CellSearch criteria in normal human blood spiked 

with 1,000 SF767 and SKBR3 cells from cell culture. (C) Exemplary image of an SKBR3 cell 

isolated by the CellSearch system. 

Adapting the CellSearch system to detect CSFTCs 

We aimed to develop a method of using the CellSearch system to detect tumor cells in 

CSF. The CellSearch uses 7.5 mL of peripheral blood for its standard detection method and relies 

on several checkpoints and caveats throughout its processing. One such caveat is that the tumor 

cells will be in the buffy coat following centrifugation of the sample. Due to this, CSF cannot be 

directly analyzed in the machine in lieu of blood. We circumvented this by spiking the cellular 

contents of the CSF sample into normal human blood for detection. This was accomplished by 



www.manaraa.com

224 

centrifugation of the CSF and resuspension in a small volume of phosphate buffered saline 

(Figure 2). We regularly obtained normal blood for these assays by procuring leukocyte filters 

from blood drives and reconstituting normal blood with a physiological number of leukocytes. The 

CSF suspension was then spiked into the reconstituted blood and subjected to the standard 

CellSearch protocol. It is noteworthy that leukocytes are particularly important for this assay as 

the CellSearch system relies on CTCs and contaminating leukocytes when determining the focal 

plane for immunofluorescence analysis. Therefore if a sample with no CTCs is analyzed, the 

CellSearch system will abort the analysis if there are no remaining cells present for locating the 

focal plane. 

 

Figure 2: Schematic demonstrating use of the CellSearch system to detect breast 

cancer cerebrospinal fluid tumor cells. 

Accuracy and reproducibility of detecting CSFTCs 
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To characterize the recovery rate and linearity of recovery, we spiked cultured breast 

cancer cells at varying cell numbers and determined the recovery rate at these various cell counts 

(Figure 3). We found that the recovery rate was ~38%, which is similar to that found in other 

recovery experiments where cultured human tumor cells are spiked directly into blood (data not 

shown). We also found this recovery rate to be reproducible and linear across the range of cell 

numbers tested (R2 = .96). 

 

Figure 3: Recovery rate of breast cancer cells present in cerebrospinal fluid. (A) 

Enumeration and (B) recovery rate of cultured SKBR3 cells spiked into normal blood (n>3). 

Detection of CSFTCs in breast cancer patients with CNS metastases and association with 

disease burden 

Five patients with metastatic breast cancer involving the CNS were enrolled into a pilot 

study (Table 1). Detecting CSFTCs yielded a number of morphologically diverse species that 

included leukocytes, tumor cells, and significant amount of debris (Figure 4A). Note that debris is 

easily separable from tumor cells due to the immunostaining for a tumor cell marker and is an 

important advantage because tumor cells may be more difficult to distinguish by CSF cytology. 

Analyzing data at baseline and following treatment, there was a general inverse correlation 

between Karnofsky performance status (KPS) of and CSFTC number (r = -.66) (Figure 4B). 

There was a general trend toward a higher CSFTC count with positive CSF cytology (r = -.37) 
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(Figure 4B), though CSF cytology clearly does not reflect disease burden (Figure 4C). Subject 5 

had >12,000 CSFTCs and on the same day of CSF collection developed status epilepticus and 

deceased. Interestingly this patient showed no gross abnormalities by MRI that suggested tumor 

burden and this underscores the importance of CSFTCs as a disease marker (Figure 4D). While 

the correlation between CSFTC number and Karnofsky performance shows significance in the 

pilot study, a large cohort of patients will likely reveal a stronger significance than can be 

demonstrated with this pilot study. 

Table 1: Patient characteristics. 

Subject Age Her2 
Progesterone 

receptor 

Estrogen 

receptor 

Baseline 

KPS 
Chemotherapy 

1 54 + - - 80 
Intrathecal trastuzumab, liposomal 

cytarabine, methotrexate 

2 52 - - + 70 
Intrathecal liposal cytarabine, 

methotrexate, thiotepa, topotecan 

3 28 - - - 60 
Intrathecal liposal cytarabine, 

methotrexate, thiotepa, topotecan 

4 34 - - - 90 
Intrathecal thiotepa, methotrexate, 

topotecan 

5 35 - - - 60 Intrathecal thiotepa and topotecan 
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Figure 4: Detection of CSFTCs in breast cancer patients with CNS metastasis and 

correlation with Karnofsky performance status. (A) Exemplary images of species detected in 

CSF samples. (B) Correlation of Karnofsky performance status with CSF cytology versus CSFTC 

number in subjects 1,2, 3, and 5 throughout treatment. (C) Correlation of CSFTCs with CSF 

results that report positive (+), equivocal (?), or negative (-). (D) MRI of subject 5 on day of CSF 

withdrawal. 

CSFTC count dynamically changes with treatment 

Response to chemotherapy was evident in three patients that were followed over time in 

this pilot study (Figure 5). Subjects 1, 2, and 3 exhibited a significant decline in the number of 

CSFTCs following initiation of intrathecal therapy consisting of a combination of topotecan, 

liposomal cytarabine, thiotepa, methotrexate and/or trastuzumab (Table 1). It should be noted 

that at several time-points CSF cytology conducted by a blinded pathologist gave an equivocal 

result and that improvements in KPS tended to follow a decline in CSFTCs. This data clearly 

highlights the inability of CSF cytology to reflect dynamic changes in disease burden. 
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Figure 5: CSFTC counts dynamically change with chemotherapy. (A) CSFTC count 

over time and (B) MRI of subject 1 at baseline and days post-treatment initiation. CSFTC count 

over time in (C) subject 2 and (D) subject 3. (E) MRI of subject 3 at baseline (left panel), 42 

(middle panel), and 68 days (right panel) post-treatment initiation. (F) MRI of subject 4 at baseline 

(left panel) and 57 days post-treatment initiation (right panel). 

 

In addition to its general correlation with KPS, changes in CSFTC number tended to 

coincide with clinical deficits. Prior to treatment initiation, subject 2 had >104 CSFTCs and 

exhibited facial weakness and vertical diplopia. These symptoms were resolved approximately 

two months after treatment and was accompanied by a near complete disappearance of 

CSFTCs. Subject 3 also harbored >104 CSFTCs and suffered from severe vomiting, lethargy, and 

headaches. Following treatment this patient had a CSFTC count that declined significantly to 267 

CSFTCs but still suffered from headaches, though other symptoms resolved. The clinical 

outcome of leptomeningeal or parenchymal CNS metastases varies greatly. Patients with an 

excess of 10,000 CSFTCs had cranial nerve deficits or mental status decline. Two patients 

showed an improvement in KPS after chemotherapy initiation and a concomitant decline in 

CSFTCs. Our findings from this small pilot study suggest a possible predictive role for CSFTCs 

and their quantification to serve as a reliable marker that reflects disease burden dynamically 

unlike CSF cytology and provides information regarding the magnitude of disease burden. 

Gadolinium-enhanced MRI allows for the sensitive visualization of macroscopic changes 

with the brain, spine or leptomeninges. We found an inverse correlation with CSFTC count and 

the presence or enhancement pattern seen on such imaging. It should be noted that though 

neuroimaging is an indicator of CNS disease, it relies on the breakdown of the blood-brain barrier 

rather than a direct sign of response. Multi-modality imaging is an ever-advancing technology but 

is not sufficient to make judgments about cranial and spinal metastases. CSFTCs represent a 

novel marker of CNS disease that detects cancer at the single cell level and provides critical 

information to clinicians that attempt to combine cytology, imaging and neurologic examination as 

part and parcel of a treatment algorithm. While this study serves as a proof-of-principle and 
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shows promising significance, a larger cohort of patients with follow up studies will be required to 

concretely establish the prognostic significance of CSFTC enumeration and the ability of 

therapeutic agents to eliminate these cells. 

DISCUSSION 

The biology of metastases and their relationship to the microenvironment of the CNS 

remains unclear [15, 16]. The nature and purpose of malignant cells from extraneural sites within 

the CSF compartment also remains unexplored [17]. Our investigation suggests that the CSF is a 

viable source for detecting metastatic tumor cells in cancer patients with CNS involvement. 

Micrometastases to the cerebrospinal compartment and transmigration through the blood-brain 

barrier are poorly understood events[17-20]. Current anti-cancer therapies are relatively 

successful for local control of breast cancer at early stages. However, late-stage and recurrent 

breast cancer often metastasizes to the brain [21]. 

Accurate, early diagnosis and appropriate treatment decisions are likely to yield a better 

patient outcome and underscores the importance of accurately monitoring common secondary 

sites by a highly sensitive detection method. The ability to detect single cells at a metastatic site 

such as the brain may allow for therapeutic intervention that could prevent or destroy metastatic 

disease an early stage [22]. Delays in diagnosis can be disastrous from a neurologic standpoint 

and treatment decisions must weigh the risks of aggressive treatment with the extent of disease. 

As potentiated by the detection of CSFTCs, the knowledge that viable cancer remains in the CSF 

of patients is highly useful in making treatment decisions. 

A number of techniques have been developed for the isolation of CTCs in peripheral blood 

since the first attempts in the late 1800s [23]. Investigational labs now use several different 

techniques for CTC detection including reverse transcriptase polymerase chain reaction, 

immunocytochemistry, flow cytometry, microchips, and size-based filtration methods [24-26]. The 

CellSearch system presents a platform that reliably captures CTCs in this setting and provides a 

semi-automated platform for enumerating CTCs based on multiple markers to yield high 

accuracy, recovery, and reproducibility. Several studies have demonstrated the clinical 
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significance of CTC number as a prognostic marker when enumerated by the CellSearch system 

in metastatic tumors of breast, colon and prostate [1, 27, 28]. The isolation and enumeration of 

CSFTCs may provide valuable information for patients with CNS metastasis and potentiate 

studies on the biology of these cells and how they differ from the primary and metastatic tumor as 

well as the CTCs found in peripheral blood. 

The prognostic relevance of CSFTCs is correlated here with the clinical course of the 

patient and the CSFTC count. The biological significance of finding up to several thousand 

CSFTCs in a patient sample remains unclear though it is suggestive of and correlates with high 

disease burden. CNS metastases are often strategically located in close proximity to ventricular 

surfaces or CSF cisterns. However, natural circulation of CSF can be impaired, which may cause 

“loculations” of malignant CSF, thus lowering the diagnostic yield of lumbar puncture [29]. 

Our lab is currently pursuing post-isolation characterization of tumor cells isolated from 

peripheral blood as well as CSF [30]. There is an expanding though controversial body of 

evidence that cancer stem cells play a large role in the propagation of solid tumors, including 

critical mechanisms of metastasis [31-33]. The reliable, sensitive, and accurate isolation of 

CSFTCs enables such studies in conjunction with is potential as a novel marker that has clear 

advantages over CSF cytology. 

METHODS 

Cell culture experiments 

Human SKBR3 breast cancer cells were obtained from ATCC and cultured in McCoy’s 5A 

medium supplemented with 10% heat-inactivated fetal bovine serum and 1% penicillin and 

streptomycin. Human SF767 glioma cells were a kind gift from Akiva Mintz (Wake Forest 

University) and were cultured in RPMI under the same conditions. For Western blot analysis, cells 

were harvested by cell scraping, centrifuged, and lysed on ice for 2 hours. Lysates were 

harvested and the protein concentration was determined using the BioRad protein assay. 

Samples were electrophoresed on 4-12% Bis-Tris gels, transferred to PVDF, and blocked in 10% 

non-fat milk in TBST. Membranes were incubated with EpCAM (Cell Signaling) at 1:500 or Ran at 
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1:10,000 (BD biosciences) antibodies overnight at 4°C. Membranes were rinsed in TBST, 

incubated with an appropriate HRP-conjugated secondary antibody, and visualized using ECL-

Plus and X-Ray film. 

Cell spiking experiments 

Tumor cells were harvested from log-phase growth by trypsinization and enumerated using 

a Cellometer (Nexcelom Biosciences) in triplicate. The appropriate volume of cell suspension was 

then added to a tube of CSF previously cleared of tumor cell contaminants by centrifugation. This 

CSF was then subjected to the standard CSFTC detection procedure described below. 

Patients 

The main inclusion criteria were newly discovered breast cancer with metastatic disease 

involving the CNS as confirmed with radiologic or cytologic findings and the commencement of 

intrathecal chemotherapy. All subjects provided informed consent for testing of their CSF as 

approved by the Institutional Review Board at the Penn State Hershey Medical Center. All 

subjects were diagnosed with primary breast cancer prior to enrollment into this study and had 

undergone neurosurgical intervention in terms of placement of a ventricular access device. All 

patients had involvement of the CNS, with combinations of parenchymal or leptomeningeal 

metastases. The ventricular access device provided a means to obtain CSF for testing. Prior to 

the onset of treatment, patients underwent thorough neurologic examination to identify any 

deficits and were stratified based on KPS. CSF was obtained every 2 to 3 weeks for each patient 

and often coincided with intrathecal chemotherapy deposition. The neuro-oncologist providing 

treatment and evaluating the patients was blinded to the CSFTC analysis. 

Detection of CSFTCs 

9mL of CSF was centrifuged at 500g for 10 minutes, the supernatant was removed, and the 

pellet was resuspended in 1mL of PBS. The suspension was then spiked into 6.5mL of 

reconstituted normal human blood. This blood was obtained from leukocyte filters that were 

generated from blood drives as approved by the Institutional Review Board at Penn State 



www.manaraa.com

233 

Hershey Medical Center. 6.5mL of filtered blood was removed from the leukocyte trap, placed 

into a CellSave (Veridex) tube, and inverted 8 times. The leukocyte filter was rinsed with PBS and 

back-flushed to obtain leukocytes that were enumerated and spiked at 107 cells per 6.5mL 

sample of blood. Samples were analyzed within 3 days using the standard CellSearch protocol 

and the CTC Epithelial Cell Kit (Veridex). In brief, the CellSearch system qualifies a cell as a CTC 

if it has an evident nucleus by DAPI staining and is EpCAM+, cytokeratin+, and CD45-. Analysis 

and enumeration of CTCs was conducted by a blinded, certified assay operator. 

Statistics 

Bivariate correlation calculated by Pearson’s correlation. 
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Appendix 5 - List of Abbreviations 
 
Abbreviation or symbol Term  
  
5-FU      5-fluorouracil 

AML acute myeloid leukemia  

AMPK      AMP-activated protein kinase 

AP-1      activator protein 1 

Bak      BCL2-antagonist/killer 

Bax       Bcl-2–associated X protein 

Bcl-2      B-cell lymphoma 2 

BSA bovine serum albumin 

CBP CREB-binding protein  

CEBP      Ccaat-enhancer-binding protein 

c-FLIP      cellular FLICE-like inhibitory protein 
	  
ChiP Calcein-high population 

CHOP CAAT/enhancer binding protein homologous 

transcription factor 

cIAP      Cellular inhibitor of apoptosis 

Cited 2      Cbp/p300-interacting transactivator 2 

CloP Calcein-low population 

CSC cancer stem cell 

CSFTC cerebrospinal fluid tumor cell 

CT computed tomography 

CTC  circulating tumor cell 

DAB      3,3-Diaminobenzidine 

DcR1  decoy receptor 1 

DcR2 decoy receptor 2 

DD death domain 

DIABLO direct IAP binding protein with low pI 
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DISC death-inducing signaling complex 

DMSO dimethyl sulfoxide 

DNA deoxyribonucleic acid 

DR4 death receptor 4 

DR5 death receptor 5 

EGFP enhanced green fluorescent protein 

EGFR epidermal growth factor receptor 

EMSA      Electrophoretic mobility shift assay 

EMT      epithelial-mesenchymal transition 

ER endoplasmic reticulum 

ERK extracellular signal-related kinase 

FADD Fas-associated death domain  

FasL      Fas ligand 

FBS      fetal bovine serum  

FOXO      Forkhead box O 

gadd45      growth arrest and DNA damage 

GAS Inteferon-γ-activated sequence 

GBM glioblastoma multiforme 

GR gamma radiation 

H&E      hematoxylin and eosin 

HDAC      histone deacetylase 

HDACi      HDAC inhibitor 

HPLC high-performance liquid chromatography 

HSF-1      heat shock factor protein 1 

HTLV-1      human T-cell leukemia virus type I 

i.p. intraperitoneal 

i.v. intravenous 

IFN interferon 
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IHC immunohistochemistry 

IL interleukin 

IRF      interferon regulatory transcription factor  

IRSE      interferon-stimulated response element 

JNK      c-Jun N-terminal kinase 

LPS      lipopolysaccharide  

MAPK mitogen-activated protein kinase 

Mcl-1       myeloid cell leukemia sequence 1 

MDR      multi-drug resistance 

MEK  mitogen-activated protein kinase/extracellular 

signal-regulated kinase 

MRI magnetic resonance imaging 

mRNA messenger RNA 

MST1      macrophage stimulating 1  

MTD maximum tolerated dose 

NCI National Cancer Institute 

NEMO      NF-kappa-B essential modulator  

NFAT      Nuclear factor of activated T-cells 

NFκB      Nuclear Factor-KappaB 

NHL non-Hodgkin’s lymphoma 

NK      natural killer 

NSCLC non-small cell lung cancer 

PBS phosphate buffered saline 

PCG-1 Peroxisome proliferator-activated receptor 

gamma coactivator 1 

PCR      polymerase chain reaction 

PEDF      pigment epithelium-derived factor 

PEGF      precursor epithelium growth factor 
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PET positron emission tomography  

PFS progression-free survival 

PI propidium iodide 

PML       Promyelocytic leukemia protein 

PO oral 

PPAR      peroxisome proliferator-activated receptor 

PTEN      Phosphatase and tensin homolog 

qwk once per week 

RECIST  response evaluation criteria in solid tumors 

rhTRAIL recombinant human TRAIL 

RIP1 receptor-interacting protein-1 

RNA ribonucleic acid 

ROS reactive oxygen species 

RT reverse transcription PCR 

s.d. standard deviation 

SAHA      suberoylanilide hydroxamic acid 

SCF      Skp, Cullin, F-box containing 

SGK      Serum glucocorticoid kinase 

shRNA short hairpin RNA 

siRNA small interfering RNA 

Sirt1 silent mating type information regulation 2  

Smad      Sma and Mad homologue 

SNP      single nucleotide polymorphism 

SP-1      specificity protein 1 

STAT Signal Transducers and Activators of 

Transcription 

TIC TRAIL-inducing compound 

TMZ temozolomide 
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TNF tumor necrosis factor 

TRAF2  TNF receptor-associated factor 2  

TRADD TNF-R1-associated death domain  

TRAIL TNF-related apoptosis-inducing ligand 

TTP time to progression 

TUNEL Terminal deoxynucleotidyl transferase dUTP 

nick end labeling 

UTR untranslated region 

VPA       valproic acid  

Wnt wingless 

XIAP  X-linked inhibitor of apoptosis protein 
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